Peru is a country open to the world economy and to national and foreign investments; therefore, economic activities of an industrial, commercial and service nature in general are developed. It also has a wide variety of natural resources, which is why the state has chosen to apply differentiated treatment in the tax field to certain types of business activities by granting certain “benefits” and “incentives”. However, due to a lack of knowledge about tax legislation, they are not used adequately. In this context, the objective was to analyze the level of knowledge of the legislation, tax and its impact on the development of their operations in formal business aquaculture in the ring circumlacustrine of the region in 2021. It was developed under a descriptive correlational design with a sample of 80 circumlacustrine ring aquaculture companies. The results indicated that there is a low level of knowledge about tax legislation on the part of the owners of aquaculture companies, which negatively affects the development of their formal operations in the circumlacustrine ring of the Puno region. As a consequence, it has a negative impact on the formalization of companies since they do not know about the benefits and tax incentives and even less about the tax regimes to which they are subject as taxpayers; therefore, aquaculture companies are in the informality category in a high percentage.
Integrated Resource Management plays a crucial role in sustainable development by ensuring efficient allocation and utilization of natural resources. Remote Sensing (RS) and Geographic Information System (GIS) have emerged as powerful tools for collecting, analyzing, and managing spatial data, enabling comprehensive and integrated decision-making processes. This review article uniquely focuses on Integrated Resource Management (IRM) and its role in sustainable development. It specifically examines the application of RS and GIS in IRM across various resource management domains. The article stands out for its comprehensive coverage of the benefits, challenges, and future directions of this integrated approach.
Vietnamese e-commerce has recently experienced a robust growth, especially e-commerce platforms such as Shopee, Lazada, Tiki. Reverse logistics has been pointed out as having a significant impact on the performance of an e-commerce platform. To capture the actual impact of some reverse logistics factors, i.e, Return Processing Time (RPT), Return Policy (RP), Return Cost (RC), Customer Service (CSR), and Post-Return Product (PRP), on Customer Satisfaction (CS), an OLS model was conducted. The results indicated significant correlation between all independent variables and dependent variables, which CSR shows the greatest correlation and PRP shows the weakest correlation. The study then made some suggestions for e-commerce platforms in Vietnam to enhance their reverse logistics process to get higher customer satisfaction.
Outsourcing logistics operations is a common trend as businesses prioritize core activities. Establishing a sustainable partnership between businesses and logistics service providers requires a systematic approach. This study is needed to develop a more effective and adaptive framework for logistics service provider selection by integrating diverse criteria and decision-making methodologies, ultimately enhancing the precision and sustainability of procurement processes. This study advocate for leveraging industry-based knowledge in procurement, emphasizing the need to define decision-making elements. The research analyzes nearly 300 logistics procurement projects, using a neural network-based methodology to propose a model that aids businesses in identifying optimal criteria for evaluating logistics service providers based on extensive industry knowledge. The goal of this study is to develop and test a practical model that would support businesses in choosing most suitable criteria for selection of logistics service providers based on cumulative market patterns. The results of this study are as follows. It introduces novel elements by gathering and systematizing unique market data using developed data processing methodology. It innovatively classifies decision-making elements, allocating them into distinct groups for use as features in a neural network. The study further contributes by developing and training a predictive model based on a prepared dataset, addressing pre-defined goals, expectations related to green logistics, and specific requirements in the tendering process for selecting logistics service providers. Study is concluded by summarizing suggestions for future research in area of adopting neural networks for selection of logistics service providers.
This study examines the bottleneck effect of logistics performance on Vietnam’s imports, utilizing bilateral trade data from 2007 to 2022. We evaluate the impact of logistics performance on imports of Vietnam using the augmented gravity model and a random effects estimator. Our findings reveal that the minimum logistics performance between Vietnam and its trading partners has a significantly positive impact on the Vietnamese imports. The magnitude of its bottleneck effects is much larger than the influence of Vietnam’s individual logistics performance or deviations in performance with its trading partners. Recognizing the impact of logistics bottlenecks on international trade enables policymakers to develop more effective and efficient logistics-related policies for enhancing bilateral trade with trading partners.
Copyright © by EnPress Publisher. All rights reserved.