In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
Currently, important efforts are being made to improve governability and governance by combining the monopoly of state decisions with the collaboration of diverse actors in public practice. Based on the above, the purpose of this article is to analyze the evolution of conceptual approaches to both terms over the last 23 years, examining scientific production by author authors, journals, and countries. The methodology was based on a bibliometric analysis: First, the WoS and Scopus databases were searched. Subsequently, scientometric techniques and the Science Tree methodology were used to identify patterns, structures, and trends, to understand the progress and behavior of scientific production, and to measure the quantity and quality of research that has addressed these issues from different perspectives. This study examined governability and governance publications and their annual citations to assess their impact and analyzed the total output of both datasets to identify similarities and differences in governability and governance research. The findings reveal that the number of publications and citations in this field is increasing, with the United States being the most academically influential country and the journal Marine Policy being the most prominent in ranking. These data provide key information for decision-makers, researchers, and academics for future debate and discussion toward operationalizing the concepts at the practical level of action, management, and the functioning of government structures.
This study explores the determinants of control loss in eating behaviors, employing decision tree regression analysis on a sample of 558 participants. Guided by Self-Determination Theory, the findings highlight amotivation (β = 0.48, p < 0.001) and external regulation (β = 0.36, p < 0.01) as primary predictors of control loss, with introjected regulation also playing a significant role (β = 0.24, p < 0.05). Consistent with Self-Determination Theory, the results emphasize the critical role of autonomous motivation and its deficits in shaping self-regulation. Physical characteristics, such as age and weight, exhibited limited predictive power (β = 0.12, p = 0.08). The decision tree model demonstrated reliability in explaining eating behavior patterns, achieving an R2 value of 0.39, with a standard deviation of 0.11. These results underline the importance of addressing motivational deficits in designing interventions aimed at improving self-regulation and promoting healthier eating behaviors.
Objective: As the scale and importance of official development assistance (ODA) continue to grow, the need to enhance the effectiveness of ODA policies has become more critical than ever before. In this context, it is essential to systematically classify recipient countries and establish tailored ODA policies based on these classifications. The objective of this study is to identify an appropriate methodology for categorizing developing countries using specific criteria, and to apply it to actual data, providing valuable insights for donor countries in formulating future ODA policies. Design/Methodology/Approach: The data used in this study are the basic statistics on the Sustainable Development Goals (SDGs) published annually in the SDGs Report. The analytical method employed is decision tree analysis. Results: The results indicate that the 167 countries analyzed were classified into 10 distinct nodes. The study further limited the scope to the five nodes representing the most disadvantaged developing countries and suggested future directions for aid policies for each of these nodes.
To achieve the Paris Agreement’s temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
Copyright © by EnPress Publisher. All rights reserved.