In response to the challenges of climate change, this study explores the use of moringa pod powder as reinforcement in the manufacture of compressed earth bricks to promote sustainable building materials. The objective is to evaluate the impact of African locust bean pod powder on the mechanical properties of the bricks. Two types of soils from Togo were characterized according to geotechnical standards. Mixtures containing 8% African locust bean pod powder at various particle sizes (0.08 mm, 2 mm, and between 2 and 5 mm) were formulated and tested for compression and tensile strength. The results show that the addition of African locust bean pod reduces the mechanical strength of the bricks compared to the control sample without pods, with strengths ranging from 0.697 to 0.767 MPa, compared to 0.967 to 1.060 MPa for the control. However, the best performances for the mixtures were obtained with a fineness of less than 2 mm. This decrease in performance is attributed to several factors, including inadequate water content and suboptimal preparation and compaction methods. Optimizing formulation parameters is necessary to maximize the effectiveness of African locust bean pods. This work highlights the valorization of agro-industrial waste, paving the way for a better understanding of bio-based materials and future research for sustainable construction.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
Nanoscale zero-valent iron (nZVI) is thought to be the most effective remediation material for contaminated soil, especially when it comes to heavy metal pollutants. In the current high-industrial and technologically advanced period, water pollution has emerged as one of the most significant causes for concern. In this instance, silica was coated with zero-valent iron nanoparticles at 650 and 800 ℃. Ferric iron with various counter-ions, nitrate (FN) and chloride (FC), and sodium borohydride as a reducing agent were used to create nanoscale zero-valent iron in an ethanol medium with nitrogen ambient conditions. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques were employed to describe the structures of the generated zero-valent iron nanoparticles. Further, we investigated the electrical properties and adsorption characteristics of dyes such as alizarin red in an aqueous medium. As a result, zero-valent nano iron (nZVI), a core-shell environmental functional material, has found extensive application in environmental cleanup. The knowledge in this work will be useful for nZVI-related future research and real-world applications.
We report on the measurement of the response of Rhodamine 6G (R6G) dye to enhanced local surface plasmon resonance (LSPR) using a plasmonic-active nanostructured thin gold film (PANTF) sensor. This sensor features an active area of approximately ≈ 2.5 × 1013 nm2 and is immobilized with gold nanourchins (GNU) on a thin gold film substrate (TGFS). The hexane-functionalized TGFS was immobilized with a 90 nm diameter GNU via the strong sulfhydryl group (SH) thiol bond and excited by a 637 nm Raman probe. To collect both Raman and SERS spectra, 10 μL of R6G was used at concentrations of 1 μM (6 × 1012 molecules) and 10 mM (600 × 1014 molecules), respectively. FT-NIR showed a higher reflectivity of PANTF than TGFS. SERS was performed three times at three different laser powers for TGFS and PANTF with R6G. Two PANTF substrates were prepared at different GNU incubation times of 10 and 60 min for the purpose of comparison. The code for processing the data was written in Python. The data was filtered using the filtfilt filter from scipy.signals, and baseline corrected using the Improved Asymmetric Least Squares (ISALS) function from the pybaselines.Whittaker library. The results were then normalized using the minmax_scale function from sklearn.preprocessing. Atomic force microscopy (AFM) was used to capture the topography of the substrates. Signals exhibited a stochastic fluctuation in intensity and shape. An average corresponding enhancement factor (EF) of 0.3 × 105 and 0.14 × 105 was determinedforPANTFincubated at 10 and 60 min, respectively.
New telechelic polymers functionalized with terminal ethyl xanthate or vinyl groups were synthesized via cationic ring-opening polymerization (CROP). The polymerization of 2-ethyl-2-oxazoline (Etoxa) and 2-methoxycarbonylethyl-2-oxazoline (Esteroxa) was initiated by 1,4-trans-dibromobutene in acetonitrile at 78 ℃, with termination using either potassium ethyl xanthate or 4-vinylbenzyl-piperazine. Structural characterization by 1H and 13C NMR and FTIR spectroscopy confirmed the telechelic architecture. 1H NMR analysis revealed degrees of polymerization (DP) of 24–29 for ethyl xanthate-terminated polymers and 22–23 for vinyl-terminated polymers, consistent with theoretical values. The molar compositions of Etoxa and Esteroxa in all telechelic polymers matched the initial monomer feed ratios. End-group functionalization efficiency was quantified as follows: Ethyl xanthate-terminated polymers: 64%–82%, and vinyl-terminated polymers: 69% and 98% (for respective batches).
In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
Copyright © by EnPress Publisher. All rights reserved.