Scientists have harnessed the diverse capabilities of nanofluids to solve a variety of engineering and scientific problems due to high-temperature predictions. The contribution of nanoparticles is often discussed in thermal devices, chemical reactions, automobile engines, fusion processes, energy results, and many industrial systems based on unique heat transfer results. Examining bioconvection in non-Newtonian nanofluids reveals diverse applications in advanced fields such as biotechnology, biomechanics, microbiology, computational biology, and medicine. This study investigates the enhancement of heat transfer with the impact of magnetic forces on a linearly stretched surface, examining the two-dimensional Darcy-Forchheimer flow of nanofluids based on blood. The research explores the influence of velocity, temperature, concentration, and microorganism profile on fluid flow assumptions. This investigation utilizes blood as the primary fluid for nanofluids, introducing nanoparticles like zinc oxide and titanium dioxide (. The study aims to explore their interactions and potential applications in the field of biomedicine. In order to streamline the complex scheme of partial differential equations (PDEs), boundary layer assumptions are employed. Through appropriate transformations, the governing partial differential equations (PDEs) and their associated boundary conditions are transformed into a dimensionless representation. By employing a local non-similarity technique with a second-degree truncation and utilizing MATLAB’s built-in finite difference code (bvp4c), the modified model’s outcomes are obtained. Once the calculated results and published results are satisfactorily aligned, graphical representations are used to illustrate and analyze how changing variables affect the fluid flow characteristics problems under consideration. In order to visualize the numerical variations of the drag coefficient and the Nusselt number, tables have been specially designed. Velocity profile of -blood and -blood decreases for increasing values of and , while temperature profile increases for increasing values of and . Concentration profile decreases for increasing values of , and microorganism profile increases for increasing values of . For rising values of and the drag coefficient increases and the Nusselt number decreases for rising values of and The model introduces a novel approach by conducting a non-similar analysis of the Darchy-Forchheimer bioconvection flow of a two-dimensional blood-based nanofluid in the presence of a magnetic field.
Technology development in the agricultural sector is important in the development of Thailand’s economy. The purpose of this research was to study the approach of guidelines for future agricultural technology development to increase productivity in the Agricultural sector in order to develop a structural equation model. The research applied mixed-methodology. Qualitative research by in depth interview from 9 experts and focus group with 11 successful businesspersons for approve this model. The quantitative data gather from firm, in the 500 of agricultural sector by using questionnaire, using statistical tests of descriptive analysis, inferential analysis, and multivariate analysis. The research found guidelines for future agricultural technology development to increase productivity in the Agricultural sector composed of 4 latent. The most important item of each latent were as following: 1) Agrobiology Technology (= 4.41), in important item as choose seeds that for disease resistance and tolerate the environment to suit the cultivation area, 2) Environmental Assessment (= 4.37),, in important item as survey of cultivated areas according to topography with geographic information system, 3) Agricultural Innovation (= 4.30), in important item as technology reduces operational procedures, reduce the workforce and can reduce operating costs, and 4) Modern Management Systems (= 4.13), in important item as grouping and manage as a cooperative to mega farms. In addition, the hypothesis test found that the difference in manufacturing firm sizes. Medium and Small size and large size revealed overall aspects that were significantly different at the level of 0.05. The analysis of the developed structural equation model found that there was in accordance and fit with the empirical data and passed the evaluation criteria. Its Chi-square probability level, relative Chi-square, the goodness of fit index, and root mean square error of approximation were 0.062, 1.165, 0.961, and 0.018, respectively.
This investigation extends into the intricate fabric of customer-based corporate reputation within the banking industry, applying advanced analytics to decipher the nuances of customer perceptions. By integrating structural equation modeling, particularly through SmartPLS4, we thoroughly examine the interrelations of perceived quality, competence, likeability, and trust, and how they culminate in customer satisfaction and loyalty. Our comprehensive dataset is drawn from a varied demographic of banking consumers, ensuring a holistic view of the sector’s reputation dynamics. The research reveals the profound influence of these constructs on customer decision-making, with likeability emerging as a critical driver of satisfaction and allegiance to the bank. We also rigorously test our model’s internal consistency and convergent validity, establishing its reliability and robustness. While the direct involvement of Business Intelligence (BI) tools in the research design may not be overtly articulated, the analytical techniques and data-driven approach at the core of our methodology are synonymous with BI’s capabilities. The insights garnered from our analysis have direct implications for data-driven decision-making in banking. They inform strategies that could include enhancing service personalization, refining reputation management, and improving customer retention efforts. We acknowledge the need to more explicitly detail the role of BI within the research process. BI’s latent presence is inherent in the analytical processes employed to interpret complex data and generate actionable insights, which are crucial for crafting targeted marketing strategies. In summary, our research not only contributes to academic discourse on marketing and customer perception but also implicitly demonstrates the value that BI methodologies bring to understanding and influencing consumer behavior in the banking sector. It is this blend of analytics and marketing intelligence that equips banks with the strategic leverage necessary to thrive in today’s competitive financial landscape.
A method for studying the resilience of energy and socio-ecological systems is considered; it integrates approaches developed at the International Institute of Applied Systems Analysis and the Melentyev Institute of Energy Systems (MESI) of the Siberian Branch of the Russian Academy of Sciences. The article discusses in detail the methods of using intelligent information technologies, in particular semantic technologies and knowledge engineering (cognitive probabilistic modeling), which the authors propose to use in assessing the risks of natural and man-made threats to the resilience of the energy sector and social and ecological systems. More attention is paid to the study and adaptation of the integral indicator of quality of life, which makes it possible to combine these interdisciplinary studies.
This study investigates the impact of perceived innovative leadership on team innovation performance, with innovation climate acting as a mediating variable. A quantitative research approach, including a survey of team members across various industries, was used to collect data. Analysis through Structural Equation Modeling (SEM) reveals that perceived innovative leadership significantly positively influences team innovation performance, with innovation climate partially mediating this relationship. The findings emphasize the critical role of innovative leadership and a positive innovation climate in fostering organizational innovation, offering valuable insights for management practices. This paper also discusses the study’s limitations and provides directions for future research.
In the context of a globalized economic environment, businesses are facing an increasing number of environmental challenges, prompting them not only to pursue economic benefits but also to focus on environmental protection and social responsibility. Green supply chain management (GSCM) and green innovation have become key strategies for enterprises aiming for sustainable development. This study explores the impact of green supply chain practices on green innovation performance, with a focus on how knowledge management and organizational integration serve as mediating variables in this relationship. Grounded in the resource-based view (RBV) and knowledge-based view (KBV) theories, this research employs surveys and in-depth interviews with companies across various industries, combined with the analysis of structural equation modeling, to reveal the complex relationship between GSCM practices, knowledge management capabilities, levels of organizational integration, and green innovation performance. The results show that GSCM practices significantly enhance corporate green innovation performance through effective knowledge management and organizational integration. These findings enrich the theories of GSCM and green innovation, providing practical guidance for enterprises on how to enhance green innovation performance through strengthening knowledge management and organizational integration. Finally, this study discusses its limitations and suggests possible directions for future research, such as exploring the differences in findings across different industry backgrounds and examining other potential mediating or moderating variables.
Copyright © by EnPress Publisher. All rights reserved.