This study aims to explore the perceptions of the Scholarship of Teaching and Learning (SoTL) of primary and secondary school teachers in C City, China, as well as the challenges they face in developing these abilities. Through narrative inquiry involving five current teachers, the research collected their personal experiences in the development of teaching and academic abilities, with data gathered through semi-structured interviews. The findings reveal that teachers are primarily driven by external forces, professional identity, personal growth, and the need to improve teaching quality in their efforts to enhance teaching and academic abilities. However, they also encounter challenges such as teaching pressures, time management difficulties, insufficient school support, and declining energy. To overcome these obstacles, teachers have adopted strategies such as time management, task allocation, and cognitive enhancement. The study concludes by recommending that through the combined efforts of teachers, schools, and society, a strong professional belief system should be established, and a supportive environment should be created to collaboratively promote the development of teaching and academic abilities among primary and secondary school teachers, thereby fostering their professional growth.
The purpose of this study is to investigate the correlation between sponsorship and the performance and development of early career athletes transitioning from junior level to professional sports, because this issue has not been fully explored in the Czech Republic. The reason is the almost absolute absence of financial or material support for such early-career athletes, when their transition from junior categories and the entire junior category is almost always exclusively financed and supported by their parents and families. We also emphasise the absolute absence of legislative provisions that would give supporters of such athletes at least a tax or other advantage. The research is based on research of Cardenas (2023), Hong and Fraser (2023) and Moolman and Shuttleworth (2023) and aims to assess how financial and material support provided by sponsors can enhance an athlete’s performance and long-term career trajectory. A mixed method approach was adopted, combining quantitative analysis through surveys and performance data with qualitative interviews. Data from 173 early career athletes from various disciplines were analysed using t-tests and ANOVA statistical methods to assess financial stability, access to better training, and community participation. Results indicate that sponsorship significantly contributes to better performance metrics, with sponsored athletes showing a 20% improvement in competition results compared to nonsponsored athletes. Furthermore, sponsorship financial support improved training opportunities and access to elite facilities, which was shown to increase athletes’ performance by 15%. However, some challenges related to sponsorship obligations, such as marketing commitments, were highlighted by athletes, underscoring the pressures that sponsorship can introduce. The implications of this study suggest that effective sponsorship strategies can play a vital role in an athlete’s career development, offering not only financial stability but also opportunities for personal branding and increased community engagement. Another implication is a possible consideration for legislators in the context of preparing a legislative framework enabling tax or other benefits for companies and organisations sponsoring or supporting these young athletes. More research is recommended to explore the long-term impact of sponsorship on athlete mental health and career sustainability, as well as the differences in sponsorship effects across various sports disciplines.
Given the issues of urban-rural educational inequality and difficulties for children from poor families to succeed, this study explores the impact mechanism of internet usage on rural educational investment in China within the context of the digital divide. Using data from the 2019 China Household Finance Survey (CHFS), this study analyzed the educational investment decisions of 2064 rural households. Results indicate that in the Eastern region, a high level of educational investment is primarily influenced by the per capita income of the family, with social capital and internet usage also playing supportive roles. In the Northeastern region, the key factor is the diversity of internet usage, specifically using both a smartphone and a computer. In the Central region, factors such as the diversity of internet usage, subjective risk attitudes, the appropriate age of the household head, and per capita income of the family contribute to higher levels of educational investment. In the Western region, the dominant factors are the diversity of internet usage, subjective usage and per capita income of the family. These factors enhance expected returns on the high level of educational investment and boost farmers’ confidence. High internet usage rates significantly promote diverse and stable educational investment decisions, providing evidence for policymakers to bridge the urban-rural education gap.
The research aims to investigate the prospective implications of Artificial Intelligence (AI) on traditional media, and to elucidate the conceptualization of AI within the discourse of media professionals, governmental and private media stakeholders in Jordan, alongside media scholars and IT experts. Employing the focus group method, a specialized interview tool distinguished by its purpose, design, and procedures, two distinct cohorts were engaged: media practitioners and officials on one hand, and academics and experts on the other. The investigation revealed the absence of a universally agreed upon terminology concerning AI, attributable to its nascent nature and rapid evolution. Notably, AI, leveraging its diverse and highly proficient tools, demonstrates significant potential for transformative impacts across various facets of the media landscape. These encompass the facilitation of exceptional content production, the empowerment of journalists to express their creative capacities, and substantial reductions in time, labor, and procedural overheads in media product development. Concurrently, the integration of AI within media environments is anticipated to pose formidable challenges to existing institutional frameworks. Additionally, the imperative of curriculum development in academic institutions, both public and private, is underscored to acquaint students with AI methodologies.
The idea of emotions that is concealed in human language gives rise to metaphor. It is challenging to compute and develop a framework for emotions in people because of its detachment and diversity. Nonetheless, machine translation heavily relies on the modeling and computation of emotions. When emotion metaphors are calculated into machine translation, the language is significantly more colorful and satisfies translating criteria such as truthfulness, creativity and beauty. Emotional metaphor computation often uses artificial intelligence (AI) and the detection of patterns and it needs massive, superior samples in the emotion metaphor collection. To facilitate data-driven emotion metaphor processing through machine translation, the study constructs a bi-lingual database in both Chinese and English that contains extensive emotion metaphors. The fundamental steps involved in generating the emotion metaphor collection are demonstrated, comprising the basis of theory, design concepts, acquiring data, annotating information and index management. This study examines how well the emotion metaphor corpus functions in machine translation by proposing and testing a novel earthworm swarm-tunsed recurrent network (ES-RN) architecture in a Python tool. Additionally, the comparison study is carried out using machine translation datasets that already exist. The findings of this study demonstrated that emotion metaphors might be expressed in machine translation using the emotion metaphor database developed in this research.
Copyright © by EnPress Publisher. All rights reserved.