A large number of publications devoted to a new class of materials - high-entropy alloys (HEA), is associated with their unique chemical, physical and mechanical properties both in cast materials and in various classes of coatings and refractory compounds. As a result of the research, the features of solid-soluble high-entropy alloys based on BCC and FCC phases have been revealed. These include the role of the most refractory element in the formation of the lattice parameter, the relationship of distortion with elastic deformation, and the contribution of the enthalpy of mixing to the strength and modulus of elasticity. This made it possible, on the basis of Hooke's law, to propose a formula for determining the hardness of the HEA based on the BCC and FCC phases. Based on the fact that with an increase in temperature in high-entropy alloys, the values of the modulus of elasticity, distortion and enthalpy of mixing will obey the same laws, a formula is proposed for determining the yield strength depending on the test temperature of solid-soluble HEA based on BCC and FCC phases. A formula based on the role of the most fusible metal in the alloy is proposed to calculate the melting point of solid-soluble materials.
This study investigated the variability of climate parameters and food crop yields in Nigeria. Data were sourced from secondary sources and analyzed using correlation and multivariate regression. Findings revealed that pineapple was more sensitive to climate variability (76.17%), while maize and groundnut yields were more stable with low sensitivity (0.98 and 1.17%). Yields for crops like pineapple (0.31 kg/ha) were more sensitive to temperature, while maize, beans, groundnut, and vegetable yields were less sensitive to temperature with yields ranging from 0.15 kg/ha, 0.21 kg/ha, 0.18 kg/ha, and 0.12 kg/ha respectively. On the other hand, maize, beans, groundnut, and vegetable yields were more sensitive to rainfall ranging from 0.19kg/ha, 0.15kg/ha, 0.22 kg/ha, and 0.18 kg/ha respectively compared to pineapple yields which decreased with increase rainfall (−0.25 kg/ha). The results further showed that for every degree increase in temperature, maize, pineapple, and beans yields decreased by 0.48, 0.01, and 2.00 units at a 5 % level of significance, while vegetable yield decreased by 0.25 units and an effect was observed. Also, for every unit increase in rainfall, maize, pineapple, groundnut, and vegetable yields decreased by 3815.40, 404.40, 11,398.12, and 2342.32 units respectively at a 5% level, with an observed effect for maize yield. For robustness, these results were confirmed by the generalized additive and the Bayesian linear regression models. This study has been able to quantify the impact of temperature on food crop yields in the African context and employed a novel analytical approach combining the correlation matrix and multivariate linear regression to examine climate-crop yield relationships. The study contributes to the existing body of knowledge on climate-induced risks to food security in Nigeria and provides valuable insights for policymakers, farmers, government, and stakeholders to develop effective strategies to mitigate the impacts of climate change on food crop yields through the integration of climate-smart agricultural practices like agroforestry, conservation agriculture, and drought-tolerant varieties into national agricultural policies and programs and invest in climate information dissemination channels to help consider climate variability in agricultural planning and decision-making, thereby enhancing food security in the country.
A numerical investigation utilizing water as the working fluid was conducted on a 2D closed loop pulsating heat pipe (CLPHP) using the CFD software AnsysFluent19.0. This computational fluid dynamics (CFD) investigation explores three instances where there is a consistent input of heat flux in the evaporator region, but the temperatures in the condenser region differ across the cases. In each case, the condenser temperatures are set at 10 ℃, 20 ℃, and 30 ℃ respectively. The transient simulation is conducted with uniform time steps of 10 s. Generally, the heat rejection medium operated at a lower temperature performs better than at a higher temperature. In this CFD study the thermal resistances gets decreased with the decreasing value of condenser temperatures and the deviation of 35.31% of thermal resistance gets decreased with the condenser region operated at the temperature of 10 ℃.
This research investigates the effects of drying on some selected vegetables, which are Telfaria occidentalis, Amaranthu scruentus, Talinum triangulare, and Crussocephalum biafrae. These vegetables were collected fresh, sliced into smaller sizes of 0.5 cm, and dried in a convective dryer at varying temperatures of 60.0 °C, 70.0 °C and 80.0 °C respectively, for a regulated fan speed of 1.50 ms‒1, 3.00 ms‒1 and 6.00 ms‒1, and for a drying period of 6 hours. It was discovered that the drying rate for fresh samples was 4.560 gmin‒1 for Talinum triangulare, 4.390 gmin‒1for Amaranthu scruentus, 4.580 gmin‒1 for Talinum triangulare, and 4.640 gmin‒1 for Crussocephalum biafrae at different controlled fan speeds and regulated temperatures when the mass of the vegetable samples at each drying time was compared to the mass of the final samples dried for 6 hours. The samples are considered completely dried when the drying time reaches a certain point, as indicated by the drying rate and moisture contents tending to zero. According to drying kinetics, the rate of moisture loss was extremely high during the first two hours of drying and then steadily decreased during the remaining drying duration. The rate at which moisture was removed from the vegetable samples after the drying process at varying regulated temperatures was noted to be in this trend: 80.0 °C > 70.0 °C > 60.0 °C and 6.0 ms‒1 > 3.0 ms‒1 > 1.5 ms‒1 for regulated fan speed. It can be stated here that the moisture contents has significant effects on the drying rate of the samples of vegetables investigated because the drying rate decreases as the regulated temperatures increase and the moisture contents decrease. The present investigation is useful in the agricultural engineering and food engineering industries.
Copyright © by EnPress Publisher. All rights reserved.