The article discusses the interrelationships of the loxodrome or rhumb line, isometric latitude, and the Mercator projection of the rotational ellipsoid. It is shown that by applying the isometric latitude, a very simple equation of the rhumb line on the ellipsoid is obtained. The consequence of this is that the isometric latitude can be defined using the generalized geodetic longitude and not only using the geodetic latitude, as was usual until now. Since the image of the rhumb line in the plane of the Mercator projection is a straight line, the isometric latitude can also be defined using this projection. Finally, a new definition of the normal aspect of the Mercator projection of the ellipsoid is given. It is a normal aspect cylindrical projection in which the images of the rhumb line on the ellipsoid are straight lines in the plane of projection that, together with the images of the meridians in the projection, form equal angles as the rhumb line forms with the meridians on the ellipsoid. The article provides essential knowledge to all those who are interested in the use of maps in navigation. It will be useful for teachers and students studying cartography and GIS, maritime, or applied mathematics. The author uses mathematical methods, especially differential geometry. The assumption is that the readers are no strangers to mathematical cartography.
This systematic literature review (SLR) delves into the realm of Artificial Intelligence (AI)-powered virtual influencers (VIs) in social media, examining trust factors, engagement strategies, VI efficacy compared to human influencers, ethical considerations, and future trends. Analyzing 60 academic articles from 2012 to 2024, drawn from reputable databases, the study applies specific inclusion and exclusion criteria. Both automated and manual searches ensure a comprehensive review. Findings reveal a surge in VI research post-2012, primarily in journals, with quantitative methods prevailing. Geographically, research focuses on Europe, Asia Pacific, and North America, indicating gaps in representation from other regions. Key themes highlight trust and engagement’s critical role in VI marketing, navigating the balance between consistency and authenticity. Challenges persist regarding artificiality and accountability, managed through brand alignment and transparent communication. VIs offers advantages, including control and cost efficiencies, yet grapple with authenticity issues, addressed through human-like features. Ethically, VI emergence demands stringent guidelines and industry cooperation to safeguard consumer well-being. Looking ahead, VIs promises transformative storytelling, necessitating vigilance in ethical considerations. This study advocates for continued scholarly inquiry and industry reflection to navigate VI marketing evolution responsibly, shaping the future influencer marketing landscape.
Qatar FIFA 2022 was the first FIFA Football World Cup to be hosted by an Arab state and was predicted by some to fail. However, it did not only succeed but also showed a new display of destination sustainability upon hosting mega-sport events and linked tourism. Yet, some impacts tend to be long-term and need further analysis. The study aims to understand both positive and negative impacts on destination sustainability resulting from hosting mega-sport events, using bibliometric analysis of published literature during the last forty-seven years, and reflecting on the recent World Cup 2022 tournament in Qatar. A total of 2519 sources containing 665 open-access articles with 10,523 citations were found using the keywords “sport tourism” and “mega-sport”. The study found various literature researching the economic impacts in-depth, less on environmental impacts, and much less on social and cultural impacts on host communities. Debates exist in the literature concerning presumed economic benefits and motivations for hosting, and less on actual results achieved. Although World Cup 2022 is considered the most expensive among previous versions, destination sustainability seems to have benefited from the event’s hosting. Socio-cultural impacts of hosting mega-sport events seem to be addressed to an extent in the Qatar version of the World Cup, as well as environmental impacts while creating a unique image for FIFA 2022 and the destination itself. FIFA showcased this as using carbon-neutral technologies to create the micro-climate including perforated walls in the eight state-of-the-art stadiums, with the incorporation of a circular modular design for energy and water efficiency and zero-waste deconstruction post-event. The global event also drew attention and respect to the local community and underprivileged groups such as people with disabilities. Further research is needed to understand the demand-side perspective including the local community of Qatar and the event’s participants, and to analyze the long-term impacts and lessons learned from the Qatari experience.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.
Graphene, an innovative nanocarbon, has been discovered as a significant technological material. Increasing utilization of graphene has moved research towards the development of sustainable green techniques to synthesize graphene and related nanomaterials. This review article is basically designed to highlight the significant sustainability aspects of graphene. Consequently, the sustainability vision is presented for graphene and graphene nanocomposites. Environmentally sustainable production of graphene and ensuing nanomaterials has been studied. The formation of graphene, graphene oxide, reduced graphene oxide, and other derivatives has been synthesized using ecological carbon and green sources, green solvents, non-toxic reagents, and green routes. Furthermore, the utilization of graphene for the conversion of industrial polymers to sustainable recycled polymers has been studied. In addition, the recycled polymers have also been used to form graphene as a sustainable method. The implication of graphene in the sustainable energy systems has been investigated. Specifically, high specific capacitance and capacitance retention were observed for graphene-based supercapacitor systems. Subsequently, graphene may act as a multi-functional, high performance, green nanomaterial with low weight, low price, and environmental friendliness for sustainable engineering and green energy storage applications. However, existing challenges regarding advanced material design, processing, recyclability, and commercial scale production need to be overcome to unveil the true sustainability aspects of graphene in the environmental and energy sectors.
Copyright © by EnPress Publisher. All rights reserved.