During and after the Covid-19 outbreak, people’s precautionary measures of not visiting public venues like cinema halls or multiplexes were replaced by watching treasured videos or films in private settings. People are able to watch their favourite video contents on a variety of internet-connected gadgets thanks to advanced technologies. As a result, it appears that the Covid-19 outbreak has had a substantial impact on people’s inclination to continue using video streaming services. This study attempted to establish an integrated framework that describes how people change their health behaviours during pandemic conditions using the health belief model (HBM), as well as the mediating effect of HBM constructs over ECM constructs such as continuous intention to subscribe to OTT video streaming services among subscribers. The study looked at the impact of three perceived constructs, susceptibility, severity, and self-efficacy, on the confirmation/adoption of over-the-top (OTT) video streaming services during the lethal pandemic (Covid-19). The study focused on new OTT video streaming service subscribers, and 473 valid replies were collected. Path analysis and multivariate analytical methods, such as structural equation modelling (SEM), were used to estimate construct linkages in the integrated framework. Perceived severity has been identified as the most influential factor in confirmation/adoption, followed by perceived susceptibility. The results also showed that satisfied users/subscribers are more likely to use OTT video streaming services. The mediators, confirmation/adoption, perceived usefulness, and satisfaction were used to validate the influence of perceived susceptibility on continuance intention. Furthermore, contactless entertainment enhances security for users/subscribers by allowing them to be amused across several internet-based venues while adhering to social distance norms.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
The present study, developed under a quantitative approach, explanatory scope and causal correlational design, aims to determine the influence of invisible learning on the research competence of high school students in two private schools in the city of Lima, Peru, whose educational models seek to develop autonomous learning and research through discovery learning and experimentation. Two questionnaires were applied to 120 students of the VII cycle of basic education, one to measure the perception regarding invisible learning with 20 items and the other to measure investigative competencies with 21 items; both instruments underwent the corresponding validity and reliability tests before their application. Among the main findings, descriptive results were obtained at a medium level for both variables, the correlations found were significant and moderate, and as for influence, the coefficient of determination R2 yielded a value of 0.13, suggesting that 13% of investigative competence is predicted by invisible learning. These results show that autonomy, the use of digital technologies, metacognition and other aspects that are part of invisible learning prepare students to solve problems of varying complexity, allowing them to face the challenges of contemporary knowledge in an innovative and effective manner.
Copyright © by EnPress Publisher. All rights reserved.