Investors and company managements often rely on traditional performance evaluation indicators, such as return on equity, return on assets, and other financial ratios, to explain changes in a company’s market value added (MVA). However, the effectiveness of these traditional measures in explaining market value fluctuations remains uncertain. This research aims to investigate the impact of various profitability measures, namely return on equity, gross profit margin, operating profit margin, and return on assets, on explaining changes in the MVA of pharmaceutical and chemical companies listed on the Amman Stock Exchange. To achieve the study’s objectives, we analyzed the published financial statements of a sample consisting of 14 industrial companies out of a total of 53 companies listed on the Amman Stock Exchange during the period from 2008 to 2022. Relevant financial indicators were extracted from these statements to serve the purposes of the study. Correlation coefficients were employed to measure the extent to which the independent variables (profitability measures) could interpret changes in the dependent variable (MVA). One of the most significant findings of the study is that three dimensions of profitability measures have a statistically significant impact on explaining changes in the MVA of pharmaceutical and chemical companies listed on the Amman Stock Exchange, albeit to varying degrees. This suggests that traditional profitability measures still play a crucial role in influencing market perceptions of a company’s value, despite the potential limitations of these measures in capturing the full scope of a company’s performance and potential.
This paper aims to investigate the determinants of performance for insurance companies in Tunisia from 2004 to 2017. Namely, we consider three dimensions of determinants; those related to firms’ microenvironment, macroenvironment and meso or industry environment. The performance of insurance companies is measured using three criteria: Return On Assets (ROA), Return On Equity (ROE), and Combined Ratio. The independent variables are categorized into three groups: microeconomic variables (Firm Size, Financial leverage, Capital management risk, Volume of capital, and Age of the firm), meso-economic variables (Concentration ratio and Insurance Sector Size), and macroeconomic variables (Inflation, Unemployment, and Population Growth). The General Least Squares (GLS) regression technique is employed for the analysis. The study reveals that the financial performance of Tunisian insurance companies is positively influenced by firm size, capital amount, and risk capital management. On the other hand, it is negatively influenced by leverage level, industry size, concentration index, inflation, and unemployment. In terms of technical performance, the capital amount of the firm, industry size, age of the firm, and population growth have a positive impact. However, firm size, leverage, concentration index, and risk capital management negatively affect technical performance. This paper contributes to the existing literature by examining the determinants of performance specifically for insurance companies in Tunisia. Besides the classical proxies of performance, this paper has the originality of using the technical performance which is the most suitable for the case of Insurance companies.
This study will explore the direct and indirect impacts of collaborative governance innovation on organizational value creation in higher vocational education in China in the context of the digital era. This paper employs a mixed research methodology to construct and validate a model of the relationship between collaborative governance, digital competence, value chain restructuring, and value creation. This study first adopted an exploratory sequential design. In the qualitative interviews, 15 experts from education, business, and other related fields were used as respondents to explore accurate variable factors and determine the value of the research framework. The quantitative research used structural equation analysis to analyze 979 valid online questionnaires. Finally, the rationality of the research results was verified through case studies. The findings are clear: collaborative governance significantly positively impacts value creation, indirectly affecting organizational value creation through value chain restructuring. Furthermore, digital capabilities significantly contribute to the value chain restructuring process. This paper provides a theoretical basis and practical guidance for higher vocational education organizations to improve their governance and innovation capabilities.
This study investigates the role of property quality in shaping booking intentions within the dynamic landscape of the hospitality sector. A comprehensive approach, integrating qualitative and quantitative methodologies, is employed, utilising Airdna’s dataset spanning from July 2016 to June 2020. Multiple regression models, including interaction terms, are applied to scrutinise the moderating role of property quality. The study unveils unexpected findings, particularly a counterintuitive negative correlation between property quality and booking intentions in Model 7, challenging conventional assumptions. Theoretical implications call for a deeper exploration of contextual nuances and psychological intricacies influencing guest preferences, urging a re-evaluation of established models within hospitality management. On a practical note, the study emphasises the significance of continuous quality improvement and dynamic strategies aligned with evolving consumer expectations. The unexpected correlation prompts a shift towards more context-specific approaches in understanding and managing guest behavior, offering valuable insights for both academia and the ever-evolving landscape of the hospitality industry.
The study investigates the impact of artificial intelligence (AI)-powered chatbots on brand dynamics within the banking sector, focusing on the interrelationships between AI implementation and key brand dimensions, including awareness, equity, image, and loyalty. Using structural equation modeling (SEM) analysis on data collected from 520 banking customers, the study tests eight hypotheses to explore the direct and indirect effects of AI-driven interactions on brand development. The findings reveal that AI chatbots significantly enhance brand awareness in banking services, demonstrating moderate positive effects on both brand equity and brand image. Notably, while brand awareness exerts a strong influence on brand image, it does not have a significant direct effect on brand loyalty. Instead, the study shows that brand loyalty is primarily developed through the mediating effects of brand equity and image, with brand image exerting a particularly strong influence on brand equity. For banking practitioners, these insights suggest a need to integrate AI chatbots within a comprehensive brand strategy that merges technological innovation with traditional relationship-building approaches. Limitations of the study and potential directions for future research are also discussed, providing avenues for further exploration of AI’s role in brand management.
Copyright © by EnPress Publisher. All rights reserved.