This study employs a transfer matrix, dynamic degree, stability index, and the PLUS model to analyze the spatiotemporal changes in forest land and their driving factors in Yibin City from 2000 to 2022. The results reveal the following: (1) The land use in Yibin City is predominantly characterized by cultivated land and forest land (accounting for over 95% of the total area). The area of cultivated land initially increased and then decreased, while forest land continued to decline and construction land expanded significantly. The rate of forest land loss has slowed (with the dynamic degree decreasing from −0.62% to −0.04%), and ecosystem stability has improved (the F-value increased from 2.27 to 2.9). The conversion of cultivated land to forest land is the primary driver of forest recovery, whereas the conversion of forest land to cultivated land is the main cause of reduction; (2) cultivated land is concentrated in the central and northeastern regions, while forest land is distributed in the western and southern mountainous areas. Construction land is predominantly located in urban areas and along transportation routes. Areas of forest land reduction are mainly found in the central and southern regions with rapid economic development, while areas of forest land increase are concentrated in high-altitude zones or key ecological protection areas. Stable forest land is distributed in the western and southern ecological conservation zones; (3) changes in forest land are primarily influenced by annual precipitation, elevation, and distance to rivers. Road accessibility and GDP have significant impacts, while slope, annual average temperature, and population density exert moderate influences. Distance to railways, aspect, and soil type have relatively minor effects. The findings of this study provide a scientific basis for the sustainable management of forest resources and ecological conservation in Yibin City.
This systematic literature review (SLR) delves into the realm of Artificial Intelligence (AI)-powered virtual influencers (VIs) in social media, examining trust factors, engagement strategies, VI efficacy compared to human influencers, ethical considerations, and future trends. Analyzing 60 academic articles from 2012 to 2024, drawn from reputable databases, the study applies specific inclusion and exclusion criteria. Both automated and manual searches ensure a comprehensive review. Findings reveal a surge in VI research post-2012, primarily in journals, with quantitative methods prevailing. Geographically, research focuses on Europe, Asia Pacific, and North America, indicating gaps in representation from other regions. Key themes highlight trust and engagement’s critical role in VI marketing, navigating the balance between consistency and authenticity. Challenges persist regarding artificiality and accountability, managed through brand alignment and transparent communication. VIs offers advantages, including control and cost efficiencies, yet grapple with authenticity issues, addressed through human-like features. Ethically, VI emergence demands stringent guidelines and industry cooperation to safeguard consumer well-being. Looking ahead, VIs promises transformative storytelling, necessitating vigilance in ethical considerations. This study advocates for continued scholarly inquiry and industry reflection to navigate VI marketing evolution responsibly, shaping the future influencer marketing landscape.
Eco-friendly and greener barrier materials are required to replace the synthetic packaging materials as they produce a threat to environment. These can be fabricated by natural polymers such as cellulose nanofiber (CNF). The sustainability of CNF was so amazing due to its potential for circular economy and provides alternative platform for synthetic plastics. The challenging task to fabricate CNF films still existed and also current methods have various limitations. CNF films have good oxygen permeability and the value was lower than synthetic plastics. However, CNF films have poor water vapour permeability and higher than that of synthetic plastics. The fabrication method is one of strong parameters to impact on the water permeability of CNF films. The deposition of CNF suspension on the stainless-steel plate via spraying, is a potential process for fabrication for CNF films acting as barrier material against water vapour. In spraying process, the time required to form CNF films in diameter of 15.9 cm was less than 1 min and it is independent of CNF content in the suspension. The uniqueness of CNF films via the spraying process was their surfaces, such as rough surface exposed to air and smooth surface exposed to stainless steel. Their surfaces were investigated by SEM, AFM and optical profilometry micrographs, confirming that the smooth surface was evaluated notable lower surface roughness. The spray coated surface was smooth and glossy and its impact on the water vapor permeability remains obscure. The spraying process is a flexible process to tailor the basis weight and thickness of CNF films can be adjusted by the spraying of CNF suspension with varying fibre content. The water vapour permeability of CNF films can be tailored via varying density of CNF films. The plot between water vapour transfer rate (WVTR)/water vapour and density of CNF films has been investigated. The WVP of spray coated CNF films varied from 6.99 ± 1.17 × 10−11 to 4.19 ± 1.45 × 10−11 g/m.s.Pa. with the density from 664 Kg/m3 to 1,412.08 Kg/m3. The WVP of CNF films achieved with 2 wt% CNF films (1,120 Kg/m3) was 3.91 × 10−11 g/m.s.Pa. These values were comparable with the WVP of synthetic plastics. Given this correspondence, CNF films via spraying have a good barrier against water vapour. This process is a potential for scale up and commercialization of CNF films as barrier materials.
Tropical dry forests are complex and fragile ecosystems with high anthropogenic intervention and restricted reproductive cycles. They harbor unique richness, structural, physiological and phenological diversity. This research was carried out in the upper Magdalena valley, in four forest fragments with different successional stages. In each fragment, four permanent plots of 0.25 ha were established and the light habitat associated with species richness, relative abundance and rarity was evaluated, as well as the forest dynamics that included mortality, recruitment and diameter growth for a period of 5.25 years. In mature riparian forest, species richness was found to be higher than that reported in other studies for similar areas in the Cauca Valley and the Atlantic coast. Values of species richness, heterogeneity and rarity are higher than those found in drier areas of Tolima. Forest structure, diversity and dynamics were correlated with light habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. The utilization rate of photosynthetic effective radiation in the forest underlayer with high canopy density is low, which is related to the low species richness, while the underlayer under light is more abundant and heterogeneous.
The rapid growth of e-commerce in South Africa has increased the demand for efficient last-mile delivery. Motorcycle delivery drivers play a crucial role in the last-mile delivery process to bridge the gap between retailers and consumers. However, these drivers face significant challenges that impact both logistical efficiency and their socio-economic well-being. This study critically analyzes media narratives on the safety and working conditions of motorcycle delivery drivers in the e-commerce sector in South Africa. The thematic analysis of newspaper articles identified recurring themes. This study reveals critical safety and labor vulnerabilities affecting motorcycle delivery drivers in South Africa’s e-commerce sector. Key findings include heightened risks of violence, hijackings, and road accidents, exacerbated by inadequate infrastructure and safety gear. Coupled with low wages, job insecurity, and limited benefits, these conditions expose drivers to significant precarity. Policy interventions are urgently needed for driver safety and sustainable logistics. By integrating insights from multiple disciplines, this study offers a comprehensive understanding of the complex challenges within this rapidly growing sector.
Tourism stands as a cornerstone industry, experiencing continual expansion within the global economy, and is increasingly acknowledged for its crucial role as an economic catalyst. The convergence of the tourism sector with the film culture industry amplifies the economic advantages of regions and enriches cultural narratives while bolstering the international resonance of regional brands. This study examines the promotional efficacy of adapted films in fostering the development of local tourism sectors. It investigates the impact of adapted films on the development of local tourism economy and provides a new analytical perspective to describe their specific contribution to the tourism economy. Empirical findings underscore that adapted films imbued with regional nuances substantially augment local tourism revenue, catalyzing the growth of the tourism sector. This highlights the capacity of adapted films to amplify regional exposure, nurturing the expansion of the local tourism economy. The findings of the study reveal that the promotional impact of adapted films on local tourism sectors is more pronounced in less developed regions than in more developed regions. Moreover, areas with limited transportation infrastructure witness a heightened promotional effect from the film industry. Rigorous robustness and endogeneity tests corroborate the reliability of these findings.
Copyright © by EnPress Publisher. All rights reserved.