The aim was to examine the relationships between selected demographic and psychographic factors and consumers' willingness to accept content generated by advanced technological innovations (AIGC) in social infrastructure. The sample consisted of 1,308 respondents. Spearman's correlation coefficient was used to examine the relationships between ordinal variables. To assess the differences between groups of respondents, a one-way analysis of variance was used, during which multiple linear regression analysis was used to confirm the predictive power of awareness and experience in relation to AI-generated content in relation to the tendency to accept such content. The study confirmed a statistically significant but weak negative relationship between the age of respondents and their willingness to accept AIGC, with younger age groups showing a slightly higher rate of acceptance. Respondents' attitudes toward the use of personal data through AI and their overall awareness of technological trends had a more significant impact on acceptance. The findings show that respondents who are open to data collection through AI technologies show a significantly higher level of acceptance of automatically generated content. Similarly, respondents who positively evaluate the current quality of AIGC have higher expectations for the future transformation of marketing strategies and media practices. The decisive factors in the social infrastructure for the acceptance of AIGC are not so much the age of the respondents, but rather their awareness, technological literacy, and level of trust in the technology itself. The study therefore recommends increasing transparency and public awareness about the use of AI in marketing and media practices in order to strengthen consumer confidence in automated content.
Fungi can be used to remove or degrade polluting compounds through a mycoremediation process. Sometimes even more efficiently than prokaryotes, they can therefore be used to combat pollution from non-biodegradable polymers. Cellulose acetate is a commonly used material in the manufacture of cigarette butts, so when discarded, it generates pollution. The fungus Pleurotus ostreatus has the ability to degrade cellulose acetate through the enzymes it secretes. The enzyme hydrolyzes the acetyl group of cellulose acetate, while cellulolytic enzymes degrade the cellulose backbone into sugars, polysaccharides, or cellobiose. In addition to cellulose acetate, this fungus is capable of degrading other conventionally non-biodegradable polymers, so it has the potential to be used to reduce pollution. Large-scale cultivation of the fungus has proven to be more economically viable than conventional methods for treating non-biodegradable polymers, which is an additional advantage.
The destructive geohazard of landslides produces significant economic and environmental damages and social effects. State-of-the-art advances in landslide detection and monitoring are made possible through the integration of increased Earth Observation (EO) technologies and Deep Learning (DL) methods with traditional mapping methods. This assessment examines the EO and DL union for landslide detection by summarizing knowledge from more than 500 scholarly works. The research included examinations of studies that combined satellite remote sensing information, including Synthetic Aperture Radar (SAR) and multispectral imaging, with up-to-date Deep Learning models, particularly Convolutional Neural Networks (CNNs) and their U-Net versions. The research categorizes the examined studies into groups based on their methodological development, spatial extent, and validation techniques. Real-time EO data monitoring capabilities become more extensive through their use, but DL models perform automated feature recognition, which enhances accuracy in detection tasks. The research faces three critical problems: the deficiency of training data quantity for building stable models, the need to improve understanding of AI’s predictions, and its capacity to function across diverse geographical landscapes. We introduce a combined approach that uses multi-source EO data alongside DL models incorporating physical laws to improve the evaluation and transferability between different platforms. Incorporating explainable AI (XAI) technology and active learning methods reduces the uninterpretable aspects of deep learning models, thereby improving the trustworthiness of automated landslide maps. The review highlights the need for a common agreement on datasets, benchmark standards, and interdisciplinary team efforts to advance the research topic. Research efforts in the future must combine semi-supervised learning approaches with synthetic data creation and real-time hazardous event predictions to optimise EO-DL framework deployments regarding landslide danger management. This study integrates EO and AI analysis methods to develop future landslide surveillance systems that aid in reducing disasters amid the current acceleration of climate change.
Instant and accurate evaluation of drug resistance in tumors before and during chemotherapy is important for patients with advanced colon cancer and is beneficial for prolonging their progression-free survival time. Here, the possible biomarkers that reflect the drug resistance of colon cancer were investigated using proton magnetic resonance spectroscopy (1H-MRS) in vivo. SW480[5-fluorouracil(5-FU)-responsive] and SW480/5-FU (5-FU-resistant) xenograft models were generated and subjected to in vivo 1H-MRS examinations when the maximum tumor diameter reached 1–1.5 cm. The areas under the peaks for metabolites, including choline (Cho), lactate (Lac), glutamine/glutamate (Glx), and myo-inositol (Ins)/creatine (Cr) in the tumors, were analyzed between two groups. The resistance-related protein expression, cell morphology, necrosis, apoptosis, and cell survival of these tumor specimens were assessed. The content for tCho, Lac, Glx, and Ins/Cr in the tumors of the SW480 group was significantly lower than that of the SW480/5-FU group (P < 0.05). While there was no significant difference in the degree of necrosis and apoptosis rate of tumor cells between the two groups (P > 0.05), the tumor cells of the SW480/5-FU showed a higher cell density and larger nuclei. The expression levels of resistance-related proteins (P-gp, MPR1, PKC) in the SW480 group were lower than those in the SW480/5-FU group (P < 0.01). The survival rate of 5-FU-resistant colon cancer cells was significantly higher than that of 5-FU-responsive ones at 5-FU concentrations greater than 2.5 μg/mL (P < 0.05). These results suggest that alterations in tCho, Lac, Glx1, Glx2, and Ins/Cr detected by 1H-MRS may be used for monitoring tumor resistance to 5-FU in vivo.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
Copyright © by EnPress Publisher. All rights reserved.