Food safety in supply chains remains a critical concern due to the complexity of global distribution networks. This study develops a conceptual framework to evaluate how food safety risks influence supply chain performance through predictive analytics. The framework identifies and minimizes food safety risks before they cause serious problems. The study examines the impact of food safety practices, supply chain transparency, and technological integration on adopting predictive analytics. To illustrate the complex dynamics of food safety and supply chain performance, the study presents supply chain transparency, technological integration, and food safety practices and procedures as independent variables and predictive analytics as a mediator. The results show that supply chain managers’ capacity to anticipate and control risks related to food safety can be improved by predictive analytics, leading to safer food production and distribution methods. The research recommends that businesses create scalable cloud-based predictive model solutions, combine data sources, and employ cutting-edge AI and machine learning tools. Companies should also note that strong, data-driven approaches to food safety require cooperative data sharing, regulatory compliance, training initiatives and ongoing improvement.
Managing business development related to the innovation of intelligent supply chains is an important task for many companies in the modern world. The study of management mechanisms, their content and interrelations of elements contributes to the optimization of business processes and improvement of efficiency. This article examines the experience of China in the context of the implementation of intelligent supply chains. The study uses the methods of thematic search and systematic literature review. The purpose of the article is to analyze current views on intelligent supply chain management and identify effective business management practices in this area. The analysis included publications devoted to various aspects of supply chain management, innovation, and the implementation of digital technologies. The main findings of the article are as follows: Firstly, the key elements of intelligent supply chain management mechanisms are identified, secondly, successful experiences are summarized and the main challenges that companies face in their implementation are identified. In addition, the article focuses on the gaps in research related to the analysis of successful experiences and the reasons for achieving them.
The successful execution of large-scale infrastructure projects is essential for economic growth and societal development, but these projects are too often beset with financial risks. The main financial risks related to infrastructure projects, including cost overrun, funding uncertainty, currency fluctuation, and regulatory change are examined in this research. The study identifies and assesses the magnitude and frequency of these risks by combining surveys and analysis of financial reports. The findings show that current risk management strategies, including hedging, contingency funds, and public-private partnerships, are often unsuitable to respond to the specific needs of financial uncertainties. The research suggests the need for an all-encompassing financial risk management framework that relies on real-time data analysis and a cocktail of risk assessment tools. Additionally, the development of strategic tailored approaches to address financial risk recovery depends on proactive stakeholder engagement. This research complements the existing literature on risk management in infrastructure projects by highlighting the financial dimensions of risk management and suggesting future research on advanced financial tools and technologies. Ultimately, large-scale infrastructure project sustainability and success contribute to economic stability and societal well-being can only be achieved through effective financial risk management.
The research aims to map environmental protection strategies and the related control tools and to identify the links among companies with the largest number of employees and sites in Hungary. The research questions were answered using a questionnaire survey method. The authors used cluster analysis to classify the 205 company strategies into the identified strategy clusters: Leaders, Awakeners, and Laggards. Then, the examined 21 environmental management control tools in the sample were divided into four groups: strategic, administrative, methodological and economic. Economic and strategic methods were the most common in the sample. The authors used cross-tabulation analysis to examine whether there is a statistically proven relationship between belonging to environmental strategy clusters and specific control tools. The analysis showed significant but weak to moderate relationships. According to Cramer’s V and the contingency coefficient, the closest relationship between the tested environmental management control tools and membership in environmental strategy clusters is shown by evaluating investments, assessing the economic viability of environmental strategies, and running an environmental training program for employees. In case of the robust lambda indicator, a significant relationship was found by examining the economics of environmental strategies and identifying environmental success factors and eco-balances. It can be concluded that the companies under examination follow a set of environmental goals, which they have incorporated into their strategic objectives. They use the available environmental management control toolbox to develop their strategies and to monitor their implementation to varying degrees.
This paper explores the role of the agile approach in managing interorganizational relationships in innovation networks. Design/methodology/approach. Relevant literature related to agile team management, network theory, innovation theory and knowledge management was studied. Based on collaboration between different approaches, a conceptual model for agile management of an innovation network was generated. Conceptual modeling was supplemented with graphical notation (diagram) of the main elements of the model. At the stage of testing the conceptual model, the action research method was applied, which provides an opportunity for organizational innovations to be carried out with the participation of researchers. The object of the pilot implementation of the conceptual model is the Bulgarian division of a global non-governmental organization (NGO) dedicated to community service. The organizational innovation applied in the testing of the model is related to improving the communication environment between individual teams (clubs), which are autonomous, but in the conditions of a network can generate projects for common, large-scale initiatives for community service. Findings. The pilot testing of the model shows its applicability, insofar as a traditionally managed structure switches to an agile communication model, in which horizontal connections become more frequent and knowledge between individual participants is transferred more efficiently. The possibility of decentralized decision-making creates the potential for generating numerous new and larger-scale initiatives for the benefit of the final beneficiaries. The participants in the network have also outlined some shortcomings, such as the need for better preliminary preparation when introducing organizational innovations in order to adequately explain and accept them.
This study focuses on the use of the Soil and Water Assessment Tool (SWAT) model for water budgeting and resource planning in Oued Cherraa basin. The combination of hydrological models such as SWAT with reliable meteorological data makes it possible to simulate water availability and manage water resources. In this study, the SWAT model was employed to estimate hydrological parameters in the Oued Cherra basin, utilizing meteorological data (2012–2020) sourced from the Moulouya Hydraulic Basin Agency (ABHM). The hydrology of the basin is therefore represented by point data from the Tazarhine hydrological station for the 2009–2020 period. In order to optimize the accuracy of a specific model, namely SWAT-CUP, a calibration and validation process was carried out on the aforementioned model using observed flow data. The SUFI-2 algorithm was utilized in this process, with the aim of enhancing its precision. The performance of the model was then evaluated using statistical parameters, with particular attention being given to Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The NSE values for the study were 0.58 for calibration and 0.60 for validation, while the corresponding R2 values were 0.66 and 0.63. The study examined 16 hydrological parameters for Oued Cherra, determining that evapotranspiration accounted for 89% of the annual rainfall, while surface runoff constituted only 6%. It also showed that groundwater recharge was pretty much negligible. This emphasized how important it is to manage water resources effectively. The calibrated SWAT model replicated flow patterns pretty well, which gave us some valuable insights into the water balance and availability. The study’s primary conclusions were that surface water is limited and that shallow aquifers are a really important source of water storage, especially for irrigation during droughts.
Copyright © by EnPress Publisher. All rights reserved.