This research aims to empirically examine the role of learning organization practices in enhancing sustainable organizational performance, utilizing knowledge management and innovation capability as mediating variables. The study was conducted in public IT companies across China, which is a vital sector for driving innovation and economic growth. A mixed-methods approach was employed, with quantitative methods accounting for 70% and qualitative methods for 30% of the research. Purposive sampling was utilized to distribute questionnaires to 546 employees from 10 public IT companies. Statistical analysis was conducted using Structural Equation Modeling (SEM). The findings indicate that learning organization practices significantly influence knowledge management practices (β = 0.785, p < 0.001) and innovation capability (β = 0.405, p < 0.001). Furthermore, knowledge management practices positively contribute to sustainable organizational performance (β = 0.541, p < 0.001), while innovation capability also has a positive effect (β = 0.143, p < 0.001). Moreover, knowledge management practices partially mediate the relationship between learning organization practices and sustainable performance, with a total effect of 0.788 (p < 0.001). The mediating role of innovation capability is also significant, with a total effect of 0.422 (p = 0.045). The study further includes qualitative in-depth interviews with 20 managers from 10 IT companies across five regions in China: East, South, West, North, and Central. Senior managers were selected through a stratified sampling method to ensure comprehensive representation by including both the largest and smallest companies in each region. These findings underscore the critical role of learning organizations in promoting sustainability through effective knowledge management and innovation capabilities within the IT sector.
The purpose of this study is to investigate different factors associated with remote online home-based learning (thereafter named OHL), including technical system quality, perceived quality of contents, perceived ease of use, and perceived usefulness in relation to the satisfaction of undergraduate students following the post-COVID-19 pandemic in Malaysia. Additionally, the mediating roles of attitude are also investigated. Two hundred questionnaires were distributed using judgmental sampling method and 156 completed responses were collected. The data were subsequently analyzed using PLS-SEM. The findings imply that the OHL system is an effective method although it is challenging to operate. In terms of perceived technical system quality, OHL is currently more gratifying for students; however, some have reported that the quality of the content delivered via the remote system is still unsatisfactory. Moreover, the study found that attitude is a significant determinant of undergraduates’ satisfaction with OHL. This study contributes to the advancement of current knowledge by inspecting the factors of the Undergraduate Level OHL System using the mediating roles of attitude. In terms of underpinning theories, Technology Acceptance Model and Information System Model were employed as the guiding principles of the current study.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
The construction of gas plants often experiences delays caused by various factors, which can lead to significant financial and operational losses. This research aims to develop an accurate risk model to improve the schedule performance of gas plant projects. The model uses Quantitative Risk Analysis (QRA) and Monte Carlo simulation methods to identify and measure the risks that most significantly impact project schedule performance. A comprehensive literature review was conducted to identify the risk variables that may cause delays. The risk model, pre-simulation modeling, result analysis, and expert validation were all developed using a Focused Group Discussion (FGD). Primavera Risk Analysis (PRA) software was used to perform Monte Carlo simulations. The simulation output provides information on probability distribution, histograms, descriptive statistics, sensitivity analysis, and graphical results that aid in better understanding and decision-making regarding project risks. The research results show that the simulated project completion timeline after mitigation suggested an acceleration of 61–65 days compared to the findings of the baseline simulation. This demonstrates that activity-based mitigation has a major influence on improving schedule performance. This research makes a significant contribution to addressing project delay issues by introducing an innovative and effective risk model. The model empowers project teams to proactively identify, measure, and mitigate risks, thereby improving project schedule performance and delivering more successful projects.
Indonesia ranks as the second-largest source of plastic garbage in marine areas, behind China. This is a critical problem that emphasises the need for synergistic endeavors to safeguard the long-term viability of marine ecosystems. The objective of this work is to examine the implementation of the Penta Helix model in the management of marine plastic trash. For this purpose, a Systematic Literature Review (SLR) was carried out, utilizing scholarly papers sourced from the Science Direct, Scopus, and Web of Science databases. The analysis centred on evaluating the Penta Helix model as a cooperative framework for tackling plastic waste management in the marine environments of Indonesia and China. The results suggest that the Penta Helix methodology successfully enables the amalgamation of many interests and resources, making a valuable contribution to the mitigation of plastic pollution in the waters of both nations. In order to advance a more comprehensive and sustainable approach to plastic waste management, this multidisciplinary plan brings together stakeholders from government, academia, business, civil society, and the media. Under this framework, the government is responsible for formulating laws, guidelines, and programs to decrease the use of disposable plastics and improve waste management infrastructure, all while guaranteeing adherence to environmental constraints. Simultaneously, the industrial and academic sectors are responsible for creating sustainable technology and pioneering business strategies, while civil society, in collaboration with the media, has a crucial role in increasing public consciousness regarding the destructive effects of plastic trash. This comprehensive strategy emphasizes the need of synergistic endeavors in tackling the intricate issues of marine plastic contamination.
Plastic products are items that we use every day around us, and their replacement speed are very fast, so that to recycle waste plastic has become the focus of environmental problems. This study has proposed an optimized circular design for the recycle plant of waste plastic, therefore, and our proposed strategy is to build a new tertiary recycling plant to reduce the total generation amount of the derived solid plastic waste from ordinary and secondary recycling plants and the semi-finished products from secondary recycling plant. Results obtained from a real recycle plant has showed that to recycle the tertiary waste plastic in a tertiary recycling plant, the finished products produced from a secondary recycling plant accounts about 27% of ordinary waste plastic, and the semi-finished products that mainly is scrap hardware accounts about 1% of ordinary waste plastic. Other derived solid plastic waste accounts for 6% of ordinary plastic waste. Therefore, if the ordinary, secondary and tertiary recycle plant can be set all-in-one, it can reduce the total generation amount of derived solid plastic waste from 34% to 6%, without and with a tertiary recycling plant, respectively. It can also increase the operating income of the secondary recycle plant and the investment willingness of the new tertiary recycle plant.
Copyright © by EnPress Publisher. All rights reserved.