This study investigates the factors influencing the adoption of telehealth among consumers in Malaysia, aiming to understand the impact of effort expectancy, performance expectancy, computer self-efficacy, and trust on the intention to use telehealth, building on the Unified Theory of Acceptance and Use of Technology (UTAUT). A quantitative descriptive methodology was used, collecting data from 390 Malaysian consumers via an online survey. The data were analyzed using IBM SPSS software to evaluate the relationships between the variables. The analysis revealed significant positive relationships between all examined factors and the adoption of telehealth. Performance expectancy was the most influential factor, followed by trust, effort expectancy, and computer self-efficacy. The multiple regression model indicated that these variables collectively explain 82.1% of the variance in telehealth adoption intention. The findings provide valuable insights for providers and marketers, suggesting that telehealth platforms should focus on performance expectancy, trust, and ease of use. Additionally, the study emphasizes the need for supportive policies from the Malaysian government to enhance telehealth adoption. The results contribute to the literature on healthcare technology adoption, offering practical implications for improving telehealth implementation in Malaysia.
The aim of this study was to analyze the perceived self and collective efficacy, individual and social norms and feelings related to environmental health concern among a sample of Pakistanis who are (or are not) engage in pro- environment behaviors in their daily lives. An ad hoc questionnaire with scales on pro-environmental behavior, self and collective efficacy, individual and social norms, and environmental health concerns was administered to adults in Lahore, Pakistan, and 833 respondents (62% males and 38% females) responded. Analysis of our research data shows that among those who engaged in daily pro-environmental behaviors, perceptions of individual and social norms and individual and collective efficacy were positively associated with concern for the environment and health. This study offers some interesting ideas that could be useful in developing federal, regional, local and community policies to promote daily pro-environmental behaviors. For example, in addition to advocating for environmental health and reducing one’s ecological footprint, social communication could explain that caring about environmental health (and thus adopting daily pro-environmental behaviors) is a way to manage one’s mental health. In this way, circular behavior is encouraged, which not only benefits the environment and the community, but also brings personal benefits.
High-risk pregnancies are a global concern, with maternal and fetal well-being at the forefront of clinical care. Pregnancy’s three trimesters bring distinct changes to mothers and fetal development, impacting maternal health through hormonal, physical, and emotional shifts. Fetal well-being is influenced by organ development, nutrition, oxygenation, and environmental exposures. Effective management of high-risk pregnancies necessitates a specialized, multidisciplinary approach. To comprehend this integrated approach, a comparative literature analysis using Atlas.ti software is essential. Findings reveal key aspects vital to high-risk pregnancy care, including intervention effectiveness, case characteristics, regional variations, economic implications, psychosocial impacts, holistic care, longitudinal studies, cultural factors, technological influences, and educational strategies. These findings inform current clinical practices and drive further research. Integration of knowledge across multidisciplinary care teams is pivotal for enhancing care for high-risk pregnancies, promoting maternal and fetal well-being worldwide.
In the face of growing competition, industrial and commercial firms need more effective strategies to gain competitive advantages. This study investigates the role of enterprise risk management (ERM) as a mediator in highlighting the significance of innovation capability on profitability in industrial and commercial firms listed on the Amman Stock Exchange (ASE). Data were collected from 244 respondents using a standardized questionnaire and analyzed with SPSS software. The results indicate that the innovation capability has an impact on profitability in industrial and commercial firms, as well as their ERM practices. Additionally, ERM mediates the relationship between innovation capability and profitability. Firms that adopt distinctive innovation strategies tend to maintain formal ERM strategies, which in turn enhance market superiority and profitability. This research offers some significant managerial ramifications that may be essential for business owners, executives, and decision-makers involved in the development of firms.
This research aims to examine the structural relationships between the dimensions of workation attachment, workationer power, the dimensions of workation relationship quality, and workation intention. It demonstrates that the proposed model aligns well with the collected data based on a convenience sample comprising 494 workationers in Bangkok using structural equation modeling. The analysis outcomes contribute to the tourism marketing theory by providing additional insights into the dimensions of workation attachment, workationer power, the dimensions of workation relationship quality, and workation intention. The findings from this study can aid workation managers in formulating and executing market-oriented service strategies to enhance the dimensions of workation attachment, workationer power, and workation relationship quality and foster workation intention.
In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
Copyright © by EnPress Publisher. All rights reserved.