In higher eukaryotes, the genes’ architecture has become an essential determinant of the variation in the number of transcripts (expression level) and the specificity of gene expression in plant tissue under stress conditions. The modern rise in genome-wide analysis accounts for summarizing the essential factors through the translocation of gene networks in a regulatory manner. Stress tolerance genes are in two groups: structural genes, which code for proteins and enzymes that directly protect cells from stress (such as genes for transporters, osmo-protectants, detoxifying enzymes, etc.), and the genes expressed in regulation and signal transduction (such as transcriptional factors (TFs) and protein kinases). The genetic regulation and protein activity arising from plants’ interaction with minerals and abiotic and biotic stresses utilize high-efficiency molecular profiling. Collecting gene expression data concerning gene regulation in plants towards focus predicts an acceptable model for efficient genomic tools. Thus, this review brings insights into modifying the expression study, providing a valuable source for assisting the involvement of genes in plant growth and metabolism-generating gene databases. The manuscript significantly contributes to understanding gene expression and regulation in plants, particularly under stress conditions. Its insights into stress tolerance mechanisms have substantial implications for crop improvement, making it highly relevant and valuable to the field.
This study delves into the evolving landscape of smart city development in Kazakhstan, a domain gaining increasing relevance in the context of urban modernization and digital transformation. The research is anchored in the quest to understand how specific technological factors influence the formation of smart cities within the region. To this end, the study adopts a Spatial Autoregressive Model (SAR) as its core analytical tool, leveraging data on server density, cloud service usage, and electronic invoicing practices across various Kazakhstani cities. The crux of the research revolves around assessing the impact of these selected technological variables on the smart city development process. The SAR model’s application facilitates a nuanced understanding of the spatial dynamics at play, offering insights into how these factors vary in influence across different urban areas. A key finding of this investigation is the significant positive correlation between the adoption of electronic invoicing and smart city development, a result that stands in contrast to the relatively insignificant impact of server density and cloud service usage. The conclusion drawn from these findings underscores the pivotal role of digital administrative processes, particularly electronic invoicing, in driving the smart city agenda in Kazakhstan. This insight not only contributes to the academic discourse on smart cities but also holds practical implications for policymakers and urban planners. It suggests a strategic shift towards prioritizing digital administrative innovations over mere infrastructural or technological upgrades. The study’s outcomes are poised to guide future smart city initiatives in Kazakhstan and offer a reference point for similar emerging economies embarking on their smart city journeys.
Border cities face significant challenges due to political, environmental, and social issues. Strong urban governance can help resolve many of these problems, but it requires identifying practical factors specific to each city’s location. This study aimed to assess the state of urban governance in Paveh, a border city with a population of 25,771 people. The research used both primary data collection (through a questionnaire) and secondary data sources (local and national databases and documents). The study randomly selected 379 households from Paveh’s population and determined a reliability value of 0.913 using the Cochrane procedure. To assess Paveh’s urban governance, eight criteria were used: participatory, rule-of-law compliance, transparency, responsiveness, consensus-oriented, equitable and inclusive, effective and efficient, and accountability. The findings revealed that Paveh’s urban governance, particularly in the dimensions of transparency and participation, is in an unfavorable situation.
In recent years, using novel nanomaterials to improve the antifouling and antibacterial performance of reverse osmosis membranes has received much attention. In this study, hydrophilic Ag@ZnO-hyperbranched polyglycerols nanoparticles were fabricated by ring-opening multibranched polymerization of glycidyl acid with the core-shell Ag@ZnO nanoparticles. The cellulose triacetate composite membranes were prepared by grafting Ag@ZnO-HPGs nanoparticles on the surface of cellulose triacetate membranes. The surface of the nanoparticles with active functional group –OH was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Surface morphology, charge, and hydrophilicity of the composite membranes were characterized by scanning electron microscope, zeta potential, and contact angle analysis. The results showed that grafting the Ag@ZnO-HPGs nanoparticles onto the cellulose triacetate membrane surface improved the physical and chemical properties of the cellulose triacetate composite membranes. The water flux of cellulose triacetate composite membranes increased while the salt rejection rate to NaCl slightly decreased. Meanwhile, the cellulose triacetate composite membranes showed excellent antifouling properties of having a high flux recovery. The antibacterial performance of the cellulose triacetate composite membrane against E. coli and S. aureus was prominent that the antibacterial rates were 99.50% and 92.38%, and bacterial adhesion rates were as low as 19.12% and 21.35%, respectively.
The effect of foliar treatment with brassinosteroid (BR) on gender distribution in flowers of walnut (Juglans regia L. cv. Chandler) was investigated. Grafted walnut saplings (‘Chandler’) on the wild walnut (Juglans regia L.) rootstock were planted into 70-liter pots with a soil: peat: perlite medium and grown in pots between 2016–2020. BRs (24-epibrassinolide; EBR and 22(S), 23(S)-homobrassinolide; HBR) were applied at a concentration of 1 mg L–1 for four consecutive years at the time of flower differentiation. The experimental design was completely randomized with three replicates. The results show that BR applications could alter the sexual distribution of the walnut’s flower. BRs application significantly increased the number of total flowers and female flowers per tree. The number of female flowers was also increased by the season. The highest number of female flowers (20.9) was observed in the trees in 2020 and the application of 1 mg L–1 of HBR. It was determined that the annual growth of the plant and the increase in the number of females and total flowers were positively related. The effect of BRs indicated that the response was BR-type specific.
The primary school stage is the key stage for students to form good habits and lay a good learning foundation, especially in primary schools, Chinese classes account for the largest proportion of all courses, the focus of learning began to shift to understanding and mastering. Through scientific methods, teachers can effectively improve the concentration of Chinese learning of primary school students in order to improve their interest and overall level,to have a profound impact on the future study and life of primary school students. This paper analyzes the importance and strategies of teachers' attention training in the middle Chinese classroom of primary school.
Copyright © by EnPress Publisher. All rights reserved.