Through Qualitative Comparative Analysis (QCA) on destination attractiveness characteristics at the country level, this study identifies attribute configurations in the pre- and post-pandemic period to analyze the changes and differences generated by an exogenous event (COVID-19). The results suggest that the destination attractiveness attributes work together, in multidimensional configurations, to increase leisure travel volume. We found an important change in pat-terns/configurations of attractiveness between the pre- and post-pandemic scenarios. Our findings suggest that the destination attributes may change in importance and valuation or disappear for some configurations. The conclusion has implications for the stakeholders related to the destination attractiveness development, showing possible patterns of tourism attributes to guide the action to improve the resilience in the tourism sector and recover these activities in a disaster scenario.
Previous studies support the direct relationship between outdoor physical activity and natural spaces in cities. The Active City and Nature concept explores the relationship between urban, green and active environments; it aims to demonstrate the scientific evidence for the need for action to be taken to increase participation in active living and sport, leading to healthier cities and communities. Our research seeks to analyse the city’s natural spaces as scenarios to encourage physical activity and sport, through a combined study of qualitative research techniques: the use of a digital webGIS platform, collaborative maps made by citizens, and surveys conducted with citizens and the local government. This methodology has been tested in the city of Malaga, the European City of Sport 2020. The study of the city’s main sport areas, the waterfront and natural green spaces provided data on the types of physical activity taking place in each of these areas and the physical activity needs of citizens. This research argues that it is important to know the criteria of local communities for physical activity and/or sport in natural environments, as well as the main demands expressed. This will provide valuable information to design and manage natural public spaces as a means of promoting physical activity and healthy habits.
This research examines intangible assets or intellectual capital (IC) performance of tourism-related industries in an underexplored area which is a tourism intensively-dependent country. In this study, VAIC which is a monetary valuation method and also the most widely applied measurement method, is utilized as the performance measurement method for quantifying IC performance to monetary values. Moreover, to better understand performance, the standard efficiency levels are further applied for classifying the performance levels of tourism industries. The sample sizes of study are 20 companies operating in the tourism-related industries in the world top travel destination or Thailand, and the companies’ data are collected from 2012 to 2021. Therefore, finally, there are 187 firm-year observations. The utilization of VAIC could assess IC performance of tourism firms and industries, and the standard efficiency levels further support the uniform interpretation of IC efficiency levels. The obtained results show the strong performance of both human and structural capital of the focused tourism dependent country especially in the logistics industry that directly supports and connects to the tourism attractions. Moreover, the finding also highlights the significance of human capital which plays as a major contributor for overall IC performance in this tourism dependent economy. This study contributes the new exploration of IC in the high impact industries and also specifically in the top significant tourism country. Moreover, the application of VAIC also confirms a practical application for management. The limited number of studied countries is a limitation of study. However, these new obtained data and information could be further applied for making comparisons or in-depth or statistical analysis in the future works.
This research explores the advancement of Artificial Intelligence (AI) in Occupational Health and Safety (OHS) across high-risk industries, highlighting its pivotal role in mitigating the global incidence of occupational incidents and diseases, which result in approximately 2.3 million fatalities annually. Traditional OHS practices often fall short in completely preventing workplace incidents, primarily due to limitations in human-operated risk assessments and management. The integration of AI technologies has been instrumental in automating hazardous tasks, enhancing real-time monitoring, and improving decision-making through comprehensive data analysis. Specific AI applications discussed include drones and robots for risky operations, computer vision for environmental monitoring, and predictive analytics to pre-empt potential hazards. Additionally, AI-driven simulations are enhancing training protocols, significantly improving both the safety and efficiency of workers. Various studies supporting the effectiveness of these AI applications indicate marked improvements in risk management and incident prevention. By transitioning from reactive to proactive safety measures, the implementation of AI in OHS represents a transformative approach, aiming to substantially reduce the global burden of occupational injuries and fatalities in high-risk sectors.
Leadership is one of the important factors that ensured organizational achievement. Servant leadership offers a unique point of view on leadership which developed around the idea of service to subordinates. The implementation of servant leadership can lead to various positive outcomes, including increased engagement, organizational citizenship behavior, and improved performance. However, engagement and organizational citizenship behavior can serve as mediators to enhance organizational performance even further. The present study aimed to explore a prediction model of servant leadership using mediating variables such as employee engagement and organizational citizenship behavior, with employee performance as the outcome. The sampling method used was purposive sampling. This study used a structural equation model analysis approach to determine the predicted model of servant leadership. The research showed that the role of mediating variables indicated that employee engagement and organizational citizenship behavior had a positive effect in mediating the relationship between servant leadership and employee performance. The study indicated that applying servant leadership, with employee engagement, and organizational citizenship behavior as mediating variables would have an impact on better results of employee performance.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
Copyright © by EnPress Publisher. All rights reserved.