Diagnosis-related groups (DRGs) are gaining prominence in healthcare systems worldwide to standardize potential payments to hospitals. This study, conducted across public hospitals, investigates the impact of DRG implementation on human resource allocation and management practices. The research findings reveal significant changes in job roles and skill requirements based on a mixed-methods approach involving 70 healthcare professionals across various roles. 50% of respondents reported changes in daily responsibilities, and 42% noted the creation of new roles in their organizations. Significant challenges include inadequate training (46%), and coding complexity (38%). Factor analysis revealed a complex relationship between DRG familiarity, job satisfaction, and staff morale. The study also found a moderate negative correlation between the impact on morale and years of service in the current hospital, suggesting that longer-tenured staff may require additional support in adapting to DRG systems. This study addresses a knowledge gap in the human resource aspects of DRG implementation. It provides healthcare administrators and policymakers with evidence to inform strategies for effective DRG adoption and workforce management in public hospitals.
This study sought an innovative quality management framework for Chinese Prefabricated Buildings (PB) projects. The framework combines TQM, QSP, Reconstruction Engineering, Six Sigma (6Σ), Quality Cost Management, and Quality Diagnosis Theories. A quantitative assessment of a representative sample of Chinese PB projects and advanced statistical analysis using Structural Equation Modeling supported the framework, indicating an excellent model fit (CFI = 0.92, TLI = 0.90, RMSEA = 0.06). The study significantly advances quality management and industrialized building techniques, but it also emphasizes the necessity for ongoing research, innovation, and information exchange to address the changing problems and opportunities in this dynamic area. In addition, this study’s findings and recommendations can help construction stakeholders improve quality performance, reduce construction workload and cost, minimize defects, boost customer satisfaction, boost productivity and efficiency in PB projects, and boost the Chinese construction industry’s growth and competitiveness.
Relational database models offer a pathway for the storage, standardization, and analysis of factors influencing national sports development. While existing research delves into the factors linked with sporting success, there remains an unexplored avenue for the design of databases that seamlessly integrate quantitative analyses of these factors. This study aims to design a relational database to store and analyse quantitative sport development data by employing information technology tools. The database design was carried out in three phases: (i) exploratory study for context analysis, identification, and delimitation of the data scope; (ii) data extraction from primary sources and cataloguing; (iii) database design to allow an integrated analysis of different dimensions and production of quantitative indicators. An entity-relationship diagram and an entity-relationship model were built to organize and store information relating to sports, organizations, people, investments, venues, facilities, materials, events, and sports results, enabling the sharing of data across tables and avoiding redundancies. This strategy demonstrated potential for future knowledge advancement by including the establishment of perpetual data updates through coding and web scraping. This, in turn, empowers the continuous evaluation and vigilance of organizational performance metrics and sports development policies, aligning seamlessly with the journal’s focus on cutting-edge methodologies in the realm of digital technology.
This study proposes a fuzzy analytic hierarchy process (FAHP) method to support strategic decision-makers in choosing a project management research agenda. The analytical hierarchy process (AHP) model is the basic tool used in this study. It is a mathematical tool for evaluating decisions with multiple alternatives by decomposing them into successive levels according to their degree of importance. The Sustainable Development Goals (SDG) oriented theme of project management was chosen from among four themes that emerged from a strategic monitoring study. The FAHP method is an effective decision-making tool for multiple aspects of project management. It eliminates subjectivity and produces decisions based on consistent judgment.
Since the proposal of the low-carbon economy plan, all countries have deeply realized that the economic model of high energy and high emission poses a threat to human life. Therefore, in order to enable the economy to have a longer-term development and comply with international low-carbon policies, enterprises need to speed up the transformation from a high-carbon to a low-carbon economy. Unfortunately, due to the massive volume of data, developing a low-carbon economic enterprise management model might be challenging, and there is no way to get more precise forecast data. This study tackles the challenge of developing a low-carbon enterprise management mode based on the grey digital paradigm, with the aim of finding solutions to these issues. This paper adopts the method of grey digital model, analyzes the strategy of the enterprise to build the model, and makes a comparative experiment on the accuracy and performance of the model in this paper. The results show that the values of MAPE, MSE and MAE of the model in this paper are the lowest. And the r^2 of the model in this paper is also the highest. The MAPE value of the model in this paper is 0.275, the MSE is 0.001, and the MAE is 0.003. These three indicators are much lower than other models, indicating that the model has high prediction accuracy. r2 is 0.9997, which is much higher than other models, indicating that the performance of this model is superior. With the support of this model, the efficiency of building an enterprise model has been effectively improved. As a result, developing an enterprise management model for the low-carbon economy based on the gray numerical model can offer businesses new perspectives into how to quicken the shift to the low-carbon economy.
Copyright © by EnPress Publisher. All rights reserved.