Balancing broad learning outcomes in graduate programs with detailed classroom learning outcomes is increasingly crucial in education systems. This study employs a qualitative paradigm through a case study method to address the gap between learning outcomes at the graduate program level and those at the course level. Using the ESSENTIA CURRICULUM framework—a curriculum design methodology derived from software engineering practices—we propose an innovative and adaptable approach for aligning program-wide and course-specific learning outcomes. The ESSENTIA CURRICULUM, named for its focus on the “essence of the curriculum”, is applied to the ICT for Research course within the M.Sc. program in University Teaching at the University of Nariño. This framework fosters a consistent educational journey centered on learning achievements and demonstrates its effectiveness through a comprehensive self-assessment process and stakeholder feedback. The implications of this research are twofold: it highlights the potential of adopting interdisciplinary methodologies for curriculum design and provides a scalable and alternative strategy for harmonizing learning outcomes across diverse educational contexts. By bridging principles from software engineering into education, this novel approach offers new avenues for improving curriculum coherence and applicability.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
The use of firearms, their frequency, and legitimacy through self-defence and extreme necessity are socially relevant in Czechia and Slovakia. Legal firearm ownership for defence purposes impacts overall social security, influenced by factors like firearm legislation, cultural traditions, legal awareness, and violent crime rates. Understanding this issue requires considering subjective interpretations, even among security experts. This paper explores the theoretical foundations of self-defence and extreme necessity from criminal law, alongside practical implications supported by police statistics on violent crimes involving firearms in Czechia and Slovakia. It also includes a comparison with selected EU countries. The authors’ research uses a questionnaire to assess attitudes towards choosing defensive firearms, preparation for firearms licensure, and potential support for state security forces. The findings provide insights into legal firearm owners’ behaviours and attitudes toward defence and security. The study aims to contribute to a deeper understanding of firearm use for self-defence, correlating training, weapon preferences, and willingness to enhance state security.
5G technology is transforming healthcare by enhancing precision, efficiency, and connectivity in diagnostics, treatments, and remote monitoring. Its integration with AI and IoT is set to revolutionize healthcare standards. This study aims to establish the state of the art in research on 5G technology and its impact on healthcare innovation. A systematic review of 79 papers from digital libraries such as IEEE Xplore, Scopus, Springer, ScienceDirect, and ResearchGate was conducted, covering publications from 2018 to 2024. Among the reviewed papers, China and India emerge as leaders in 5G health-related publications. Scopus, Springer Link, and IEEE Xplore house the majority of first-quartile (Q1) papers, whereas Science Direct and other sources show a higher proportion in the second quartile (Q2) and lower rankings. The predominance of Q1 papers in Scopus, Springer Link, and IEEE Xplore underscores these platforms’ influence and recognition, reflecting significant advancements in both practice and theory, and highlighting the expanding application of 5G technology in healthcare.
The integration of chatbots in the financial sector has significantly improved customer service processes, providing efficient solutions for query management and problem resolution. These automated systems have proven to be valuable tools in enhancing operational efficiency and customer satisfaction in financial institutions. This study aims to conduct a systematic literature review on the impact of chatbots in customer service within the financial sector. A review of 61 relevant publications from 2018 to 2024 was conducted. Articles were selected from databases such as Scopus, IEEE Xplore, ARDI, Web of Science, and ProQuest. The findings highlight that efficiency and customer satisfaction are central to the perception of service quality, aligning with the automation of the user experience. The bibliometric analysis reveals a predominance of publications from countries such as India, Germany, and Australia, underscoring the academic and practical relevance of the topic. Additionally, essential thematic terms such as “artificial intelligence” and “advanced automation” were identified, reflecting technological evolution in this field. This study provides significant insights for future theoretical, practical, and managerial developments, offering a framework to optimize chatbot implementation in highly regulated environments.
Lighting conditions in learning spaces can affect students’ emotions and influence their performance. This research seeks to verify the influence of classroom lighting on students’ academic performance under different conditions and measurement forms. The research method is based on the systematic review of research articles establishing case analyses characterizing lighting intensity and color temperature to determine ranges favorable to a higher level of attention and long-term memory. Also, this study shows relevant aspects of the cases representative of a sustainable solution and proposes a research model. The study found light intensity values between 350 and 1000 lux and color temperatures between 4000 and 5250 Kelvin that favor attention. Long-term memory reached the highest levels of measurement by analyzing different parameters sensitive to lighting conditions and questionnaires. In conclusion, it was demonstrated that an adequate light intensity and color temperature based on the greatest possible amount of natural light complemented with Light Emitting Diode (LED) light generates optimal lighting for the classroom, achieving energy efficiency in a sustainable solution and promoting student well-being and performance.
Copyright © by EnPress Publisher. All rights reserved.