The purpose of this study is to examine the impact of tourist spending and the growth of Oman’s tourism industry on the country’s GDP from 1996 to 2018. The study uses the error correction model and other tests for assessing the link among variables, such as the cointegration test and the Granger causality test, to accomplish its aims. Findings from the error correlation model and cointegration test show that there is a link between the variables in Oman over the long and short term. There is a positive and statistically significant relationship between tourist expenditures and economic growth, as well as a negative and statistically significant relationship between tourism expansion and economic growth. We now use ARDL regression estimators to assess the robustness of the empirical results. There is no evidence of a direct relationship between increased tourism and GDP growth, according to the study’s results. According to the research, sustainable tourism development is an achievable economic growth driver, and Oman should prioritize economic policies that support this trend.
The research utilizes a comprehensive dataset from MENA-listed companies, capturing data from 2013 to 2022 to scrutinize the influence of capital structure (CapSt) level on corporate performance across 11 distinct countries. This study analyzed 6870 firm-year observations using a quantitative research method through static and dynamic panel data analysis. The primary analysis reveals a positive correlation between the CapSt ratio and company performance using fixed effects (FE) techniques. Hence, the preliminary results were re-examined and affirmed using a two-step system generalized method of moment (GMM) estimator to address potential endogeneity concerns. This finding aligns with most studies conducted in advanced countries, indicating a positive correlation between CapSt and corporate performance. Furthermore, it is also consistent with some research conducted in less-developed markets. This research argues that, in the MENA region, the advantages of debt, such as tax saving, may outweigh the potential financial distress cost. Furthermore, it offers insights into the monitoring role of CapSt in MENA-listed companies. We strengthen our research results by employing various methodologies and using alternative measures of accounting performance and controlling size, notably panel quantile regression analysis.
The business life cycle is examined through a comprehensive literature review in this academic study. Our initial approach involves searching for relevant articles on firm life cycle and strategy using the Web of Science and Scopus databases. We conduct bibliometric analyses to identify key contributors and recurring keywords. Subsequently, we select twenty-seven research papers to explore the Theory Development, Characteristics, Context, and Methodology (TCCM) framework for firm life cycle and strategy. Our analysis summarizes corresponding business strategies for each stage, including the use of Initial Management Control Systems (MCS) in the introduction phase. As companies grow, a high inventory-to-sales ratio may hinder effectiveness, but it proves beneficial in the growth and revival stages. Mature companies excel in green process innovation and engage more in Corporate Social Responsibility (CSR) activities. In the decline stage, firms use cost efficiencies, asset retrenchment, and core activity focus for recovery, signaling commitment to a successful turnaround. However, there is a research gap in exploring appropriate global strategies for various life cycle stages, providing an opportunity for additional articles to thoroughly investigate this relationship and assess multinational enterprises’ success trajectories throughout their life cycles.
Border areas can play a crucial role in market integration and infrastructure development between Central Asian countries, thus creating favorable economic growth and regional cooperation conditions. This study aims to assess the economic impact of border areas between Kazakhstan and Uzbekistan, focusing on their role in enhancing market integration and infrastructure development to foster regional growth and cooperation. Focusing on labor and capital as essential production drivers, this study employs a sophisticated panel data regression model to explore the Cobb-Douglas production function’s application in these border territories. The research findings indicate that regions’ elasticity towards capital and labor inputs vary, necessitating differentiated economic strategies. For capital-intensive areas, we recommend prioritizing investments in infrastructure and technology to boost production outputs. Conversely, in regions where labor significantly influences production, the emphasis should be on human capital development through education, training, and improved labor market conditions. The study’s insights into the evolving trade relations between the two countries underscore the need for flexible economic policies to enhance regional integration and cooperation. This research not only fills a crucial knowledge gap but also offers a blueprint for leveraging the diverse economic landscapes of Central Asia’s border areas in future policy-making and regional economic strategy.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
Copyright © by EnPress Publisher. All rights reserved.