Using multiple evaluation methods and systems give a comprehensive assessment. A computer-based multiple-choice assessment system was designed, implemented, posted online, and used to assess students as part of their final evaluation marks for a discipline. The online system of evaluation was intended to be used multiple times for evaluating the assimilation degree of a specific course at the end of the course. The data recorded for the period 2017–2023 with about 1400 distinct users were used to analyze the performance of the evaluation system. The system worked fine and a slight modification of it served well on remote evaluation during COVID-19 period. However, the upturn of mobile phone applications requires the creation of a system adapted to the new virtual reality.
The coastal area of Bohai Bay of China has a wide distribution of salt-accumulated soils which could pose a problem to the sustainable development of the local ecology. As a result, the land remains largely degraded and unsuitable for biophysical and agricultural purposes. In this study, we characterized the soil and native plants in the area, to properly understand and identify species with satisfactory adaptation to saline soil and of high economic or ecological value that could be further developed or domesticated, using appropriate cultivation techniques. The goal was to determine the salinity parameters of the soil, identify the inhabiting plant species and contribute to the ecosystem data base for the Bay area. A field survey involving soil and plant sampling and analyses was conducted in Yanshan and Haixing Counties of Hebei Province, China, to estimate the level of salt ions as well as plant species population and type. The mean electrical conductivity (EC) of the soils ranged from 0.47 in more remote locations to 23.8 ds/m in locations closer to the coastline and the total salt ions from 0.05 to 8.8 g/kg, respectively. Each of the salinity parameters, except HCO3− showed wide variations as judged from the coefficient of variation (CV) values. The EC, as well as chloride, sulphate, Mg and Na ions increased significantly towards the coastline but the HCO3− ion showed a relatively even distribution across sampling points. Sodium was the most abundant cation and chloride and sulphate the most abundant anions. Therefore, the most dominant salinity-inducing salt that should be properly managed for sustainable ecosystem health was sodium chloride. Based on the EC readings, the most remote location from the coastline was non-saline but otherwise, the salinity ranged from slightly to strongly-very strongly saline towards the coast. There were considerably wide variations in the number and distribution of plant species across sampling locations, but most were dominated entirely Phragmites australis, Setaria viridis and Sueda salsa. Other species identified were Aeluropus littoralis, Chloris virgata, Heteropappus altaicus, Imperata cylindrica, Puccinellia distans, Puccinellia tenuiflora and Scorzonera austriaca. On average, the sampling points furthest from the coast produced the most biomass, and the point with the highest elevation had the most diverse species composition. Among species, Digitaria sanguinalis produced the highest dry mass, followed by Lolium perenne and H. altaicus, but there were considerable variations in biomass yield across sampling locations, with the location nearest the coastline having no vegetation. The observed variations in soil and vegetation should be strongly considered by planners to allow for the sustainable development of the Bahai bay area.
This study investigates university students’ understanding of the mole concept and its implications for chemistry education, highlighting the critical role of mathematical education. A questionnaire was administered to 303 students from universities in Panama, Mexico, Cuba, Chile, and Spain. The results reveal that only 29.7% of participants recognize the mole as a fundamental unit, while 20.8% confuse the amount of substance with a non-existent “Chemical System.” Only 18.5% correctly identified the substance quantity symbol as “n” and 32.7% were aware that Wilhelm Ostwald introduced the term mole, indicating deficiencies in historical knowledge. The significance of these findings highlights major misconceptions and gaps in both conceptual understanding and historical knowledge, underscoring the urgent need for revised teaching strategies. Addressing these issues is crucial for bridging the gap between theoretical knowledge and practical application, thereby enhancing instructional methods and optimizing chemistry education to improve students’ comprehension of fundamental concepts.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
The purpose of this study is to investigate different factors associated with remote online home-based learning (thereafter named OHL), including technical system quality, perceived quality of contents, perceived ease of use, and perceived usefulness in relation to the satisfaction of undergraduate students following the post-COVID-19 pandemic in Malaysia. Additionally, the mediating roles of attitude are also investigated. Two hundred questionnaires were distributed using judgmental sampling method and 156 completed responses were collected. The data were subsequently analyzed using PLS-SEM. The findings imply that the OHL system is an effective method although it is challenging to operate. In terms of perceived technical system quality, OHL is currently more gratifying for students; however, some have reported that the quality of the content delivered via the remote system is still unsatisfactory. Moreover, the study found that attitude is a significant determinant of undergraduates’ satisfaction with OHL. This study contributes to the advancement of current knowledge by inspecting the factors of the Undergraduate Level OHL System using the mediating roles of attitude. In terms of underpinning theories, Technology Acceptance Model and Information System Model were employed as the guiding principles of the current study.
Analyzing ecosystem service values (ESV) is crucial for achieving sustainable development. The main objective of this study was to assess the ecosystem services of the Cisadane watershed in Indonesia, with specific goals: (i) examining the spatiotemporal dynamics of ESV using multi-year land use and land cover (LULC) data from 2000 to 2021, (ii) exploring trade-offs and synergies among various ecosystem services, and (iii) investigating the sensitivity of ESV to changes in LULC. The results unveiled a significant decrease in forested areas (21.2%) and rice fields (10.2%), leading to a decline in ESV of $196.37 billion (33.17%) from 2010 to 2021. Throughout the period from 2000 to 2021, interactions between ESV were mainly synergistic. Projected from the baseline year (2021), the decline in ESV is expected to persist, ranging from $24.78 billion to $124.28 million by 2030 and from $45.78 billion to $124.28 million by 2050. The total estimated ecosystem values exhibited an inelastic response in terms of ecosystem value coefficients. The study also emphasizes an inelastic response in total estimated ESV coefficient concerning ecosystem value coefficients. These findings underscore the urgent need for targeted conservation efforts and sustainable land management practices to mitigate the further decline in ecosystem services and safeguard the long-term well-being of the Cisadane watershed and its inhabitants.
Copyright © by EnPress Publisher. All rights reserved.