This research focuses on addressing critical driving safety issues on university campuses, particularly vehicular congestion, inadequate parking, and hazards arising from the interaction between vehicles and pedestrians. These challenges are common across campuses and demand effective solutions to ensure safe and efficient mobility. To address these issues, the study developed detailed microsimulation models tailored to the Victor Levi Sasso campus of the Technological University of Panama. The primary function of these models is to evaluate the effectiveness of various safety interventions, such as speed reducers and parking reorganization, by simulating their impact on traffic flow and accident risk. The models provide calculations of traffic parameters, including speed and travel time, under different safety scenarios, allowing for a comprehensive assessment of potential improvements. The results demonstrate that the proposed measures significantly enhance safety and traffic efficiency, proving the model’s effectiveness in optimizing campus mobility. Although the model is designed to tackle specific safety concerns, it also offers broader applicability for addressing general driving safety issues on university campuses. This versatility makes it a valuable tool for campus planners and administrators seeking to create safer and more efficient traffic environments. Future research could expand the model’s application to include a wider range of safety concerns, further enhancing its utility in promoting safer campus mobility.
Hazards are the primary cause of occupational accidents, as well as occupational safety and health issues. Therefore, identifying potential hazards is critical to reducing the consequences of accidents. Risk assessment is a widely employed hazard analysis method that mitigates and monitors potential hazards in our everyday lives and occupational environments. Risk assessment and hazard analysis are observing, collecting data, and generating a written report. During this process, safety engineers manually and periodically control, identify, and assess potential hazards and risks. Utilizing a mobile application as a tool might significantly decrease the time and paperwork involved in this process. This paper explains the sequential processes involved in developing a mobile application designed for hazard analysis for safety engineers. This study comprehensively discusses creating and integrating mobile application features for hazard analysis, adhering to the Unified Modeling Language (UML) approach. The mobile application was developed by implementing a 10-step approach. Safety engineers from the region were interviewed to extract the knowledge and opinions of experts regarding the application’s effectiveness, requirements, and features. These interview results are used during the requirement gathering phase of the mobile application design and development. Data collection was facilitated by utilizing voice notes, photos, and videos, enabling users to engage in a more convenient alternative to manual note-taking with this mobile application. The mobile application will automatically generate a report once the safety engineer completes the risk assessment.
Assessment of water resources carrying capacity (WRCC) is of great significance for understanding the status of regional water resources, promoting the coordinated development of water resources with environmental, social and economic development, and promoting sustainable development. This study focuses on the Longdong Loess Plateau region and utilized panel data spanning from 2010 to 2020, established a three-dimensional evaluation index system encompassing water resources, economic, and ecological dimensions, uses the entropy-weighted TOPSIS model coupled with global spatial autocorrelation analysis (Global Moran’s I) and the hot spot analysis (Getis-Ord Gi* index) method to comprehensively evaluate the spatial distribution of the WRCC in the study region. It can provide scientific basis and theoretical support for decision-making on sustainable development strategies in the Longdong Loess Plateau region and other regions of the world.From 2010 to 2020, the overall WRCC of the Longdong Loess Plateau area show some fluctuations but maintained overall growth. The WRCC in each county and district predominantly fell within level III (normal) and level IV (good). The spatial distribution of the WRCC in each county and district is featured by clustering pattern, with neighboring counties displaying similar values, resulting in a spatial distribution pattern characterized by high carrying capacity in the south and low carrying capacity in the north. Based on these findings, our study puts forth several recommendations for enhancing the WRCC in the Longdong Loess Plateau area.
Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
This paper aims to research the impact of psychological contract fulfilment on employee innovative work behaviour, and the mediating role of work engagement and the moderating role of social support. A quantitative analysis was adopted to address in research. Two-wave data were collected from 332 respondents working in China. Hierarchical regression analyses were conducted to assess the proposed hypotheses. Results revealed that psychological contract fulfilment positively impacted innovative work behaviour. In addition, engagement partially mediated the relationship between psychological contract fulfilment and innovative work behaviour. Furthermore, the findings suggest that social support moderates the relationship between work engagement and innovative work behaviour, and, in turn, moderates the indirect effect of psychological contract fulfilment on innovative work behaviour through work engagement. This research extends the generalizability of findings in the psychological contract literature. The results bear significant implications for the management of employees’ innovative work behaviour.
Road accidents involving motorcyclists significantly threaten sustainable mobility and community safety, necessitating a comprehensive examination of contributing factors. This study investigates the behavioral aspects of motorcyclists, including riding anger, sensation-seeking, and mindfulness, which play crucial roles in road accidents. The study employed structural equation modeling to analyze the data, utilizing a cross-sectional design and self-administered questionnaires. The results indicate that riding anger and sensation-seeking tendencies have a direct impact on the likelihood of road accidents, while mindfulness mitigates these effects. Specifically, mindfulness partially mediates the relationships between riding anger and road accident proneness, as well as between sensation-seeking and road accident proneness. These findings underscore the importance of effective anger management, addressing sensation-seeking tendencies, and promoting mindfulness practices among motorcyclists to enhance road safety and sustainable mobility. The insights gained from this research are invaluable for relevant agencies and stakeholders striving to reduce motorcycle-related accidents and foster sustainable communities through targeted interventions and educational programs.
Copyright © by EnPress Publisher. All rights reserved.