Horticulture is a widespread activity in family farming in the Transamazonian region—Pará, with emphasis on production aimed at the family’s own consumption. The lettuce cultivar Vanda (Lactuca sativa L.) represents a significant part of this production, which prioritizes the use of internal labor. The main objective of this work was to evaluate the development of lettuce CV Vanda grown in beds using organic compost and chemical fertilization (NPK). The criteria considered to evaluate this performance were: Root system development, plant height and total fresh mass production. The best averages in relation to root development occurred in the plots cultivated with organic compost in the proportion of 5 kg/m2, due to its characteristics as a fertilizer and soil conditioner. The cultivation with the use of NPK provided the best averages in relation to the production of total fresh mass and plant height, results that were mainly attributed to the extra supply of nitrogen in the covering fertilization, which consisted in the addition of 10 g urea per square meter via soil. Statistical analysis showed no statistically significant difference regarding plant height for both treatments. And in relation to root development, the difference was statistically significant.
The wet saturated flue gas discharged by coal-fired utility boilers leads to a large amount of low-temperature waste heat loss. Inorganic ceramic membrane is acid-base resistant and has strong chemical stability. It is an ideal material for recovering low-temperature waste heat from flue gas. The experiment of waste heat recovery of flue gas was carried out with inorganic ceramic membrane as the core, and the characteristic parameters of low-temperature flue gas at the tail of the boiler were analyzed; taking 316 L stainless steel as the comparative object, the strengthening effect of inorganic ceramic film on improving heat recovery power and composite heat transfer coefficient was discussed. The results show that the waste heat recovery of flue gas is mainly the evaporation latent heat recovery of water, accounting for about 90%; circulating water is used as cooling medium, and the waste heat recovery capacity of flue gas is stronger; compared with circulating water, when air is used as the cooling medium, the effect of inorganic ceramic membrane flue gas waste heat recovery is more significant, and the enhancement coefficient is as high as 9; increasing the flue gas flow is helpful to improve the heat recovery power and composite heat transfer coefficient; at the same time, inorganic ceramic membrane can also recover condensate with high water quality. The results of this paper can provide a reference for the application of inorganic ceramic membrane in flue gas waste heat recovery.
This paper assesses South Africa’s massive infrastructure drive to revive growth and increase employment. After years of stagnant growth, this is now facing a deep economic crisis, exacerbated by the COVID-19 pandemic. This drive also comes after years of weak infrastructure investment, widening the infrastructure deficit. The plan outlines a R1 trillion investment drive, primarily from the private sector through the Infrastructure Fund over the next 10 years (Government of South Africa, 2020). This paper argues that while infrastructure development in South Africa is much-needed, the emphasis on de-risking for private sector buy-in overshadows the key role the state must play in leading on structurally transforming the economy.
The propagation of plant material in the arracacha crop is commonly done vegetatively through asexual seed, this activity has allowed its multiplication and conservation over time. The plant material available is of low quality, affecting the development and potential yield of the crop and therefore the producer’s income. The objective of the research was to comparatively analyze two technologies for the production of arracacha seed: local technology and Agrosavia technology. The information for the local technology was obtained from surveys applied to farmers and the selection was made using the deterministic sampling technique, and for the Agrosavia technology through the recording of data and production costs in research lots at commercial scale. Descriptive statistics and calculation of economic return indicators were applied for the two situations. The results show that the use of quality seed allows obtaining higher seed production (251,559 unit ha-1) and tuberous roots (25,875 kg ha-1), being superior to local technology by 14% and 28% respectively; thus, the arracacha producer acquires greater economic efficiency by obtaining lower unit cost per kilo produced and better net income with a marginal rate of return of 316.45. The results achieved are useful for farmers, companies and entities that wish to produce quality seed and support the arracacha production system in Colombia.
In view of the large energy consumption of the regeneration process in the chemical absorption decarburization process, on the basis of the enrichment classification flow process, the nanoscale ceramic film is used as a new heat exchanger between the enriched liquid and the regeneration gas. The porous ceramic film is capable of coupling thermal-mass transfer to effectively recover part of the water vapor and the heat carried in the regeneration gas, so as to reduce the regenerative energy consumption of the system. The effects of parameters such as regeneration temperature, flow rate, molar fraction of water vapor, and MEA enrichment temperature, flow rate, and MEA concentration of shunt on the hydrothermal recovery effect of ceramic membranes of different pore sizes and lengths were studied by using the heat recovery flux and water recovery rate as the indicators. The results show that the hydrothermal recovery performance of the ceramic membrane increases with the increase of MEA enrichment flow, but decreases significantly with the increase of the enrichment temperature. At the same time, with the increase of regenerative gas velocity and the molar fraction of water vapor in the regenerative gas, the heat recovery flux will increase. The heat recovery performance of the 10 nm ceramic membrane is better than that of the 20 nm ceramic membrane.
Copyright © by EnPress Publisher. All rights reserved.