A numerical investigation utilizing water as the working fluid was conducted on a 2D closed loop pulsating heat pipe (CLPHP) using the CFD software AnsysFluent19.0. This computational fluid dynamics (CFD) investigation explores three instances where there is a consistent input of heat flux in the evaporator region, but the temperatures in the condenser region differ across the cases. In each case, the condenser temperatures are set at 10 ℃, 20 ℃, and 30 ℃ respectively. The transient simulation is conducted with uniform time steps of 10 s. Generally, the heat rejection medium operated at a lower temperature performs better than at a higher temperature. In this CFD study the thermal resistances gets decreased with the decreasing value of condenser temperatures and the deviation of 35.31% of thermal resistance gets decreased with the condenser region operated at the temperature of 10 ℃.
Smallholder paprika farmers in Zimbabwe contribute to local economies and food security but face supply chain challenges like limited market access and poor infrastructure which lead to post harvest losses and unpredictable prices. To survive, these farmers must adopt sustainable value networks to reduce operational costs and improve performance. This study sought to establish the effect of sustainable value networks on the operational performance of smallholder paprika farming in Zimbabwe. This study, using a positivist research philosophy and a quantitative approach, surveyed 288 smallholder paprika farmers in Zimbabwe. Exploratory factor analysis and partial least squares structural equation modelling were used to validate the constructs and test the hypothesised relationships. Results demonstrate a moderate level of implementation of value networks in smallholder paprika farming characterised by successes and challenges. The findings illustrated resource sharing among smallholder farmers, facilitated by initiatives, such as recycled seed exchanges and financial support through village savings and loan associations. However, results show that challenges persist, particularly with market access and financial support. Results indicate that there is a significant awareness and implementation of green supply chain management practices among smallholder paprika farmers even though they do not have access to resources and live in rural areas. The findings demonstrate that value networks significantly influence the adoption of green supply chain management practices, which in turn positively impact operational performance, environmental performance, and social performance. Green supply chain management practices were found to mediate the relationship between value networks and environmental performance, social performance, and operational performance, underlining the critical role of sustainable practices in enhancing performance outcomes. While environmental performance showed a positive effect on operational performance, the direct influence of social performance on operational performance was found to be statistically insignificant, suggesting the need for further exploration of the factors linking social benefits to operational efficiency. The research contributes to both theory and practice by presenting a sustainable value network model for smallholder paprika farmers, integrating value network, green supply chain management practices and environmental performance to enhance operational performance. Practical implications include policy recommendations to strengthen collaboration between smallholder farmers and other stakeholdersand address power imbalances with intermediaries. Future research should extend the study to other agricultural sectors and incorporate more diverse stakeholder perspectives to validate and generalise the proposed sustainable value network model.
Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
In this study, the author investigates the evolving role of women in corporate boardrooms historically dominated by men, aiming to discern whether their inclusion merely serves as symbolic representation or carries substantive impact. Using a narrative literature review methodology, the author meticulously examines the historical impediments women faced in leadership positions. The findings suggest that deep-seated societal biases, rather than a lack of capability, traditionally constrained women’s leadership trajectories. While some studies suggest that corporations with genuine gender diversity in leadership may outperform in financial outcomes and innovation, this advantage is not consistently observed across all contexts and industries, necessitating a cautious interpretation of these mixed and context-dependent findings. The study argues that women’s inclusion in boardrooms is a strategic imperative for modern corporations striving for resilience, adaptability, and sustained growth in an intricate global landscape, yet also recommends further research to fully understand the broader impacts of such diversity. Furthermore, the study offers practical strategies for enhancing gender diversity in corporate leadership.
The present work conducts a comprehensive thermodynamic analysis of a 150 MWe Integrated Gasification Combined Cycle (IGCC) using Indian coal as the fuel source. The plant layout is modelled and simulated using the “Cycle-Tempo” software. In this study, an innovative approach is employed where the gasifier's bed material is heated by circulating hot water through pipes submerged within the bed. The analysis reveals that increasing the external heat supplied to the gasifier enhances the hydrogen (H2) content in the syngas, improving both its heating value and cold gas efficiency. Additionally, this increase in external heat favourably impacts the Steam-Methane reforming reaction, boosting the H2/CH4 ratio. The thermodynamic results show that the plant achieves an energy efficiency of 44.17% and an exergy efficiency of 40.43%. The study also identifies the condenser as the primary source of energy loss, while the combustor experiences the greatest exergy loss.
Copyright © by EnPress Publisher. All rights reserved.