This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
The Cisadane Watershed is in a critical state, which has expanded residential areas upstream of Cisadane. Changes in land use and cover can impact a region’s hydrological characteristics. The Soil and Water Assessment Tool (SWAT) is a hydrological model that can simulate the hydrological characteristics of the watershed affected by land use. This study aims to evaluate the impact of land use change on the hydrological characteristics of the Cisadane watershed using SWAT under different land use scenarios. The models were calibrated and validated, and the results showed satisfactory agreement between observed and simulated streamflow. The main river channel is based on the results of the watershed delineation process, with the watershed boundary consisting of 85 sub-watersheds. The hydrological characteristics showed that the maximum flow rate (Q max) was 12.30 m3/s, and the minimum flow rate (Q min) was 5.50 m3/s. The study area’s distribution of future land use scenarios includes business as usual (BAU), protecting paddy fields (PPF), and protecting forest areas (PFA). The BAU scenario had the worst effect on hydrological responses due to the decreasing forests and paddy fields. The PFA scenario yielded the most favourable hydrological response, achieving a notable reduction from the baseline BAU in surface flow, lateral flow, and groundwater by 2%, 7%, and 2%, respectively. This was attributed to enhanced water infiltration, alongside increases in water yield and evapotranspiration of 3% and 15%, respectively. l Therefore, it is vital to maintain green vegetation and conserve land to support sustainable water availability.
This study introduces a cross-country comparative analysis of the role of News Ombudsperson in the public media corporations in Spain and France. It investigates the specific media self-regulatory processes established to reduce reputational risks and increase the trust and credibility of the media organisations. It aims to fill in the gaps in prior research by applying a qualitative framework developed using indicators derived from scholarly work on regulation and governance and media management. The variables selected for the analysis are extracted from prior interdisciplinary research and focus on media self-regulatory processes, complaints management mechanisms, election, reporting procedures, checks and balances, roles, visibility and transparency of News Ombudspersons in two countries which represent the Polarised Pluralist media system category. Research questions are raised in relation to the main variables identified for the comparative analysis. Data were collected from multiple publicly available international sources, including public media organizations databases, national media regulatory authorities, and academic studies. Results reveal cross-country variations. The systematic investigation of different forms of self-regulatory procedures might lead to concrete recommendations and best practice models for media organizations beyond the European Union. Further research could address the role of media audiences as relevant stakeholders in media governance processes.
The Mass Rapid Transit (MRT) Purple Line project is part of the Thai government’s energy- and transportation-related greenhouse gas reduction plan. The number of passengers estimated during the feasibility study period was used to calculate the greenhouse gas reduction effect of project implementation. Most of the estimated numbers exceed the actual number of passengers, resulting in errors in estimating greenhouse gas emissions. This study employed a direct demand ridership model (DDRM) to accurately predict MRT Purple Line ridership. The variables affecting the number of passengers were the population in the vicinity of stations, offices, and shopping malls, the number of bus lines that serve the area, and the length of the road. The DDRM accurately predicted the number of passengers within 10% of the observed change and, therefore, the project can help reduce greenhouse gas emissions by 1289 tCO2 in 2023 and 2059 tCO2 in 2030.
The aim of our study is to provide information on how and to what extent professionals of art institutions in Hungary and Slovakia (contemporary galleries and museums) use artificial intelligence in their work processes. Our research focuses on the extent to which these institutions use artificial intelligence in the development of the institution’s operational strategy, or how they can embed the assumed usefulness of artificial intelligence in the operation of the institution, be it the creation of an exhibition, the textual processing of the professional life of an artist, or a about a tool that shapes the gallery’s marketing strategy. We conducted ten in-depth interviews in the two countries, the interviewees were selected using the snowball method. The interview took place among professionals and professionally credible artists who are actively active in contemporary fine art life. The results revealed that the use of artificial intelligence as a tool in the creative work processes is not a requirement in the field of culture, neither in Hungary nor in Slovakia. All the interviewees already had professional experience with AI, 90% of those interviewed would like to deepen their knowledge of the creative use methods of AI, e.g., by creating working groups in the workplace on an experimental basis. Based on our conclusions, we can say that artificial intelligence currently has no conscious strategic use in contemporary art institutions. It can be said that creative professionals are aware of the possibilities of using artificial intelligence in their own field of image, video, and text creation, but there is uncertainty on the part of creators and curators when it comes to copyright. The in-depth interviews provided source material for the compilation of a standardized set of questions for a larger survey of 300-500 people, proportional to the sample, so our presented results are partial results of a larger research.
This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
Copyright © by EnPress Publisher. All rights reserved.