Women’s financial literacy and financial inclusion have gained prominence in recent years. Despite progress, knowledge and access to finance remain common barriers for women, especially in emerging economies. Globally, domestic and economic violence has been recognized as a relevant social concern from a gender perspective. In this context, financial literacy and financial inclusion are considered to play a key role in reducing violence against women by empowering them with the necessary knowledge to manage their financial resources and make informed decisions. This study aims to evaluate the determinants that influence Peruvian female university students’ financial literacy and financial inclusion. To this end, a theoretical behavioral model is proposed, and a survey is applied to 427 female university students. The results are analyzed using a Partial Least Squares Structural Equation Model (PLS-SEM). The results validate all the proposed hypotheses and highlight significant relationships between financial literacy and women’s financial inclusion. A relevant relationship between financial attitude and financial behavior is also observed, as well as the influence of financial behavior and financial self-efficacy on financial literacy. The results also reveal that women feel capable of making important financial decisions for themselves and consider that financial literacy could help reduce gender-based violence. Based on these findings, theoretical and practical implications are raised. It highlights the proposal of a theoretical model based on antecedents, statistically validated in a sample of women in Peru, which lays the foundation for understanding financial literacy and financial inclusion in the Latin American region.
Introduction: Many detrimental effects on employees’ health and wellbeing might result from inadequate illumination in the workplace. Headaches and trouble focusing can result from eye strain brought on by inadequate illumination. The purpose of this study was to simulate and optimize workplace illumination in the ceramic industry. Materials and methods: A common Luxmeter ST-1300 was used to measure the illumination in seven workplaces at a height of 100 cm above the floor. DIALux evo version 7.1 software was used to simulate the illumination of workplaces. To optimize the illumination conditions, a numerical experiment design consisting of 16 scenarios was used for each of the workplaces. Four factors were considered for each scenario: luminaire height, number of luminaires, luminous flux, and light loss factor. The Design-Expert program version 13.0.5.0 was applied for developing the scenarios. Finally, by developing quadratic models for each workplace, the optimization process was implemented. Results: Every workplace had illumination levels that were measured to be between 250 and 300 lux. Instead of using compact fluorescent luminaires, LED technology was recommended to maximize the illumination conditions for the workers. Following optimization, 376 lux of illumination were visible at each workstation in every workspace. For the majority of the workspaces, the simulated illumination was expected to have a desirability degree greater than 0.9. The uniformity and illumination of the workplace were significantly impacted by the two factors of luminaire height and luminaire count. Conclusion: The primary outcomes of this optimization were the environmental, political, and socioeconomic ones, including reduced consumption power, high light flux, and environmental compatibility. Nonetheless, the optimization technique applied in this work can be applied to the design of similar situations, such as residential infrastructure.
Resisting the adoption of medical artificial intelligence (AI), it is suggested that this opposition can be overcome by combining AI awareness, AI risks, and responsibility displacement. Through effective integration of public AI dangers and displacement of responsibility, some of these major concerns can be alleviated. The United Kingdom’s National Health Service has adopted the use of chatbots to provide medical advice, whereas heart disease diagnoses can be made by IBM’s Watson. This has the ability to improve healthcare by increasing accuracy, efficiency, and patient outcomes. The resistance may be due to concerns about losing jobs, anxieties about misdiagnosis or medical mistakes, and the consciousness of AI systems drifting more responsibility away from medical professionals. There is hesitancy among healthcare professionals and the general public about the deployment of AI, despite the fact that healthcare is being revolutionised by AI, its uses are pervasive. Participants’ awareness of AI in healthcare, AI risk, resistance to AI, responsibility displacement and ethical considerations were gathered through questionnaires. Descriptive statistics, chi-square tests and correlation analyses were used to establish the relationship between resistance and medical AI. The study’s objective seeks to collect data on primary and public AI awareness, perceptions of risk and feelings of displacement that the professionals have regarding medical AI. Some of these concerns can be resolved when AI awareness is effectively integrated and patients, healthcare providers, as well as the general public are well informed about AI’s potential advantages. Trust is built when, AI related issues such as bias, transparency, and data privacy are critically addressed. Another objective is to develop a seamless integration of risk management, communication and awareness of AI. Lastly to assess how this comprehensive approach has affected hospital settings’ ambitions to use medical AI. Fusing AI awareness, risk management, and effective communication can be used as a comprehensive strategy to address and promote the application of medical AI in hospital settings. An argument made by Chen et al. is that providing training in AI can improve adoption intentions while lowering complexity through the awareness of AI.
Through Qualitative Comparative Analysis (QCA) on destination attractiveness characteristics at the country level, this study identifies attribute configurations in the pre- and post-pandemic period to analyze the changes and differences generated by an exogenous event (COVID-19). The results suggest that the destination attractiveness attributes work together, in multidimensional configurations, to increase leisure travel volume. We found an important change in pat-terns/configurations of attractiveness between the pre- and post-pandemic scenarios. Our findings suggest that the destination attributes may change in importance and valuation or disappear for some configurations. The conclusion has implications for the stakeholders related to the destination attractiveness development, showing possible patterns of tourism attributes to guide the action to improve the resilience in the tourism sector and recover these activities in a disaster scenario.
Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
Copyright © by EnPress Publisher. All rights reserved.