Uncontrolled economic development often leads to land degradation, a decline in ecosystem services, and negative impacts on community welfare. This study employs water yield (WY) modeling as a method for environmental management, aiming to provide a comprehensive understanding of the relationship between Land Use Land Cover (LULC), Land Use Intensity (LUI), and WY to support sustainable natural resource management in the Cisadane Watershed, Indonesia. The objectives include: (1) analyzing changes in WY for 2010, 2015, and 2021; (2) predicting WY for 2030 and 2050 under two scenarios—Business as Usual (BAU) and Protected Forest Area (PFA); (3) assessing the impacts of LULC and climate change on WY; and (4) exploring the relationship between LUI and WY. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model calculates actual and predicted WY conditions, while the Coupling Coordination Degree (CCD) analyzes the LULC-WY relationship. Results indicate that the annual WY in 2021 was 215.8 × 108 m³, reflecting a 30.42% increase from 2010. Predictions show an increasing trend in WY under both scenarios for 2030 and 2050 with different magnitudes. Rainfall contributes 88.99% more dominantly to WY than LULC. Additionally, around 50% of districts exhibited unbalanced coordination between LUI and WY in 2010 and 2020. This study reveals the importance of ESs in sustainable watershed management amidst increasing demand for natural resources due to population growth.
The purpose of this study is to investigate the relationship between the use of business intelligence applications in accounting, particularly in invoice handling, and the resultant disruption and technical challenges. Traditionally a manual process, accounting has fundamentally changed with the incorporation of BI technology that automates processes and allows for sophisticated data analysis. This study addresses the lack of understanding about the strategic implications and nuances of implementation. Data was collected from 467 accounting stakeholder surveys and analyzed quantitatively using correlational analysis. Multiple regression was utilized to investigate the effect of BI adoption, technical sophistication on operational and organizational performance enhancements. The results show a weak association between the use of BI tools and operational enhancements, indicating that the time for processing invoices has decreased. Challenges due to information privacy and bias were significant and negative on both operational and organizational performance. This study suggests that a successful implementation of a BI technology requires an integrated plan that focuses on strategic management, organizational learning, and sound policies This paper informs practitioners of how accounting is being transformed in the digital age, motivating accountants and policy makers to better understand accounting as it evolves with technology and for businesses to invest in concomitant advances.
This research examines intangible assets or intellectual capital (IC) performance of tourism-related industries in an underexplored area which is a tourism intensively-dependent country. In this study, VAIC which is a monetary valuation method and also the most widely applied measurement method, is utilized as the performance measurement method for quantifying IC performance to monetary values. Moreover, to better understand performance, the standard efficiency levels are further applied for classifying the performance levels of tourism industries. The sample sizes of study are 20 companies operating in the tourism-related industries in the world top travel destination or Thailand, and the companies’ data are collected from 2012 to 2021. Therefore, finally, there are 187 firm-year observations. The utilization of VAIC could assess IC performance of tourism firms and industries, and the standard efficiency levels further support the uniform interpretation of IC efficiency levels. The obtained results show the strong performance of both human and structural capital of the focused tourism dependent country especially in the logistics industry that directly supports and connects to the tourism attractions. Moreover, the finding also highlights the significance of human capital which plays as a major contributor for overall IC performance in this tourism dependent economy. This study contributes the new exploration of IC in the high impact industries and also specifically in the top significant tourism country. Moreover, the application of VAIC also confirms a practical application for management. The limited number of studied countries is a limitation of study. However, these new obtained data and information could be further applied for making comparisons or in-depth or statistical analysis in the future works.
Personality traits refer to enduring patterns of emotions, behaviors, and thoughts that shape an individual’s distinct character, influencing how they perceive and engage with their environment. This quantitative study aims to underscore the influence of personal factors and the role of educational institutions in mapping sustainable green entrepreneurial intentions among university students in Saudia Arabia. To examine the impact of personality traits and entrepreneurship education on students’ green initiatives, the research employs a quantitative research method, collecting data through a structured questionnaire survey from 494 participants who enrolled in the entrepreneurship education at King Faisal University. Structural equation modeling via SmartPLS 3 is employed for data analysis. The study reveals significant associations between the need for achievement, proactiveness, risk-aversion, self-efficacy, and entrepreneurship education with green entrepreneurial intentions. Our research findings demonstrate that the inclusion of entrepreneurship education in the curriculum has a noteworthy and favorable influence on the intention to engage in green entrepreneurship (β = −0.105, t = 3.270, p < 0.001). Additionally, it is worth noting that the desire for achievement remains significantly associated with the intention to engage in green entrepreneurship (β = 0.120, t = 3.588, p < 0.000). Furthermore, the proactive behavior of individuals has a positive and constructive impact on the intention to engage in green entrepreneurship (β = 0.207, t = 4.272, p < 0.000). Similarly, the inclination to avoid risk is found to have a beneficial and significant influence on the intention to engage in green entrepreneurship (β = 0.336, t = 4.594, p < 0.000). Lastly, it is worth highlighting that individuals’ belief in their own abilities, referred to as self-efficacy, is positively and significantly linked to the intention to engage in green entrepreneurship (β = 0.182, t = 2.610, p < 0.009). The research carries social, economic, and academic implications by emphasizing the positive contribution of green entrepreneurs to the future. Practical recommendations for policymakers and decision-makers are provided.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
This study investigates the influence of service quality, destination facilities, destination image, and tourist satisfaction on tourist loyalty in the Pasar Lama Chinatown area of Tangerang City. Utilizing data from 400 respondents, the study employed structured questionnaires analyzed through descriptive statistics, reliability analysis, exploratory and confirmatory factor analysis, and structural equation modeling (SEM). The results reveal that service quality (β = 0.47, p < 0.001), destination facilities (β = 0.33, p < 0.001), and destination image (β = 0.4, p < 0.001) all significantly enhance tourist satisfaction, which in turn has a strong positive effect on loyalty (β = 0.58, p < 0.001). Direct paths also show that service quality, destination facilities, and destination image independently contribute to tourist loyalty. Bootstrapping confirms satisfaction’s mediating role between these factors and loyalty. Practical recommendations suggest prioritizing service quality improvements, facility enhancements, and a positive destination image to foster loyalty and promote tourism sustainability in Pasar Lama, China. These insights assist tourism managers in developing strategies to enhance long-term visitor retention and engagement in the area.
Copyright © by EnPress Publisher. All rights reserved.