Comparative analysis of the development history of sports social organizations in China, Japan and South Korea from multiple perspectives, in order to provide reference suggestions for solving the existing problems of the development of sports social organizations in China as well as for the sustainable development in the future. This paper explores the optimization path of sports social organizations in China by using the literature method and comparative analysis method. The study finds that the current development of sports social organizations in Japan and South Korea is characterized by independence and autonomy, a relatively rich number and variety of organizations, mutual separation of powers and responsibilities between government agencies and social organizations, and autonomous operation and efficient governance of sports social organizations. The development of sports social organizations in China has reached a new level since the founding of New China, and the Party’s attention to and support for their development has been increasing, but China still has deficiencies in the number of organizations, organizational capacity, and policy system. The study concludes that Japan and South Korea have three development conditions for sports social organizations: a socially oriented governance system, a more complete policy and regulation system, and a standardized and efficient financial support system. The study concludes that the prosperity of sports social organizations is crucial in building a strong sports nation at the present time. Combining the successful experiences of Japan and South Korea and integrating into China’s national conditions, we strive to build a governance system that combines government and society, construct a diversified financial support system, and improve the policy support system for sports organizations to promote the progress of sports social organizations in China, and open the way for the autonomy and independence of sports social organizations in China, and put the improvement of the governance system of sports social organizations on the agenda.
This paper studies the patent race problem of communication enterprises investing in communication technologies, and constructs a portfolio optimization model which considers the expected returns, investment risks, and replacement costs, in order to achieve the dual goals of maximizing the net investment income of backward enterprises and minimizing the expected investment risk. Through numerical experimental analysis, the optimal investment portfolio strategy under different risk levels and the impact of different risk levels on the net income of lagging company are obtained. The research results show that due to the backward research in the first stage of the backward enterprises, when their own investment decision-making power is relatively high, they can focus on the development of self-interested key technology areas in order to achieve the victory of the patent race.
The telecommunications services market faces essential challenges in an increasingly flexible and customer-adaptable environment. Research has highlighted that the monopolization of the spectrum by one operator reduces competition and negatively impacts users and the general dynamics of the sector. This article aims to present a proposal to predict the number of users, the level of traffic, and the operators’ income in the telecommunications market using artificial intelligence. Deep Learning (DL) is implemented through a Long-Short Term Memory (LSTM) as a prediction technique. The database used corresponds to the users, revenues, and traffic of 15 network operators obtained from the Communications Regulation Commission of the Republic of Colombia. The ability of LSTMs to handle temporal sequences, long-term dependencies, adaptability to changes, and complex data management makes them an excellent strategy for predicting and forecasting the telecom market. Various works involve LSTM and telecommunications. However, many questions remain in prediction. Various strategies can be proposed, and continued research should focus on providing cognitive engines to address further challenges. MATLAB is used for the design and subsequent implementation. The low Root Mean Squared Error (RMSE) values and the acceptable levels of Mean Absolute Percentage Error (MAPE), especially in an environment characterized by high variability in the number of users, support the conclusion that the implemented model exhibits excellent performance in terms of precision in the prediction process in both open-loop and closed-loop.
This study explores the attributes of service quality for overseas residents provided by island county governments, using the example of the Kinmen County Government’s service center in central Taiwan. This research aims to identify key service elements that can enhance the satisfaction of Kinmen overseas residents. Drawing upon the SERVQUAL scale and a comprehensive literature review, service quality is divided into five dimensions: “administrative service,” “life counseling,” “information provision,” among others, comprising 24 service quality elements. A total of 311 valid questionnaires were collected through a survey, and Kano’s two-dimensional quality and IPA analysis were used to classify service factors. The Kano two-dimensional quality analysis revealed that “employment counseling,” “entrepreneurship counseling,” and “setting up service counters at airports and terminals during festivals” belong to attractive quality. Nine elements were classified as “one-dimensional quality” and “must-be quality,” including “one-stop service,” “exclusive consultation hotline,” and “exclusive website reveals information.” Through Quality Function Deployment (QFD), service elements that align with Kano’s two-dimensional quality and IPA priority improvement were selected for detailed study, including “financial assistance in emergencies,” “subsidy for transportation expenses back home,” “subsidies for education allowances,” and “various subsidy application information.” Following expert discussions and questionnaire surveys, eight strategies for improving key service quality elements were identified. This research not only provides actionable insights for the Kinmen County Government but also offers valuable strategies that can be applied to similar contexts globally, where remote and rural populations require specialized governmental support.
This study employed the theory of planned behavior to examine how green urban spaces influence walking behaviors, with a focus on Chongqing’s Jiefangbei Pedestrian Street. Using structural equation modelling to analyse survey data from 401 respondents, this study assessed the relationships between attitudes, subjective norms, perceived behavioral control, walking intentions, and actions. The results revealed that attitudes toward walking (β = 0.335, p < 0.001) and subjective norms (β = 0.221, p < 0.001) significantly predict walking intentions, which strongly determine actual walking behavior (β = 0.379, p < 0.001). Moreover, perceived behavioral control exerts a direct significant impact on walking actions (β = 0.332, p < 0.001), illustrating that both environmental and social factors are crucial in promoting pedestrian activity. These findings suggest that enhancing the appeal and accessibility of urban green spaces can significantly encourage walking, providing valuable insights for urban planning and public health policy. This study can guide city planners and health professionals in creating more walkable and health-conducive urban environments.
Catastrophes, like earthquakes, bring sudden and severe damage, causing fatalities, injuries, and property loss. This often triggers a rapid increase in insurance claims. These claims can encompass various types, such as life insurance claims for deaths, health insurance claims for injuries, and general insurance claims for property damage. For insurers offering multiple types of coverage, this surge in claims can pose a risk of financial losses or bankruptcy. One option for insurers is to transfer some of these risks to reinsurance companies. Reinsurance companies will assess the potential losses due to a catastrophe event, then issue catastrophe reinsurance contracts to insurance companies. This study aims to construct a valuation model for catastrophe reinsurance contracts that can cover claim losses arising from two types of insurance products. Valuation in this study is done using the Fundamental Theorem of Asset Pricing, which is the expected present value of the number of claims that occur during the reinsurance coverage period. The number of catastrophe events during the reinsurance coverage period is assumed to follow a Poisson process. Each impact of a catastrophe event, such as the number of fatalities and injuries that cause claims, is represented as random variables, and modeled using Peaks Over Threshold (POT). This study uses Clayton, Gumbel, and Frank copulas to describe various dependence characteristics between random variables. The parameters of the POT model and copula are estimated using Inference Functions for Margins method. After estimating the model parameters, Monte Carlo simulations are performed to obtain numerical solutions for the expected value of catastrophe reinsurance based on the Fundamental Theorem of Asset Pricing. The expected reinsurance value based on Monte Carlo simulations using Indonesian earthquake data from 1979–2021 is Rp 10,296,819,838.
Copyright © by EnPress Publisher. All rights reserved.