Background: The prevalence of anxiety among college students is a growing global concern, with a median prevalence of 32%. This study addresses the need for effective interventions within an educational policy framework to alleviate anxiety and promote mental health among college students. Objective: The study aims to evaluate the impact of breathing relaxation exercises and tactile art therapy on college students’ self-understanding and psychological well-being, providing reference information for policies and practices in mental health education. Methods: We enrolled 10 college students from X University in South Korea, dividing them into an experimental group and a control group. The experimental group underwent 10 sessions of breathing exercises and tactile art therapy, while the control group received standard psychological counseling. Pre- and post-tests assessed breathing function, self-understanding, and psychological well-being. Results: The experimental group demonstrated significant improvements in breathing function, particularly in forced vital capacity (FVC), and in psychological well-being, as measured by the Psychological Well-Being Scale (PWBS). Sub-factors such as safety, goal orientation, and self-acceptance within self-understanding, self-acceptance, positive relationships, purpose in life, and environmental mastery within psychological well-being, showed notable enhancements. In contrast, the control group did not show significant effects in terms of FVC and FEV1(p > 0.05), and there were no statistically significant differences in the various sub-factors of self-understanding and psychological well-being. Conclusion: The study demonstrates that integrating breathing relaxation exercises and tactile art therapy into educational policy can significantly reduce anxiety and enhance the psychological well-being of college students. These findings suggest that such interventions can be effective components of a comprehensive educational policy aimed at improving student mental health.
The increasing demand for electricity and the need to reduce carbon emissions have made optimizing energy usage and promoting sustainability critical in the modern economy. This research paper explores the design and implementation of an Intelligent-Electricity Consumption and Billing Information System (IEBCIS), focusing on its role in addressing electricity sustainability challenges. Using the Design Science Research (DSR) methodology, the system’s architecture collects, analyses, and visualizes electricity usage data, providing users with valuable insights into their consumption patterns. The research involved developing and validating the IEBCIS prototype, with results demonstrating enhanced real-time monitoring, load shedding schedules, and billing information. These results were validated through user testing and feedback, contributing to the scientific knowledge of intelligent energy management systems. The contributions of this research include the development of a framework for intelligent energy management and the integration of data-driven insights to optimize electricity consumption, reduce costs, and promote sustainable energy use. This research was conducted over a time scope of two years (24 months) and entails design, development, pilot test implementation and validation phases.
The intensification of urbanization worldwide, particularly in China, has led to significant challenges in maintaining sustainable urban environments, primarily due to the Urban Heat Island (UHI) effect. This effect exacerbates urban thermal stress, leading to increased energy consumption, poor air quality, and heightened health risks. In response, urban green spaces are recognized for their role in ameliorating urban heat and enhancing environmental resilience. This paper has studied the microclimate regulation effects of three representative classical gardens in Suzhou—the Humble Administrator’s Garden, the Lingering Garden and the Canglang Pavilion. It aims to explore the specific impacts of water bodies, vegetation and architectural features on the air temperature and relative humidity within the gardens. With the help of Geographic Information System (GIS) technology and the Inverse Distance Weighted (IDW) spatial interpolation method, this study has analyzed the microclimate regulation mechanisms in the designs of these traditional gardens. The results show that water bodies and lush vegetation have significant effects on reducing temperature and increasing humidity, while the architectural structures and rocks have affected the distribution and retention of heat to some extent. These findings not only enrich our understanding of the role of the design principles of classical gardens in climate adaptability but also provide important theoretical basis and practical guidance for the design of modern urban parks and the planning of sustainable urban environments. In addition, the study highlights GIS-based spatial interpolation as a valuable tool for visualizing and optimizing thermal comfort in urban landscapes, providing insights for developing resilient urban green spaces.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
Piano sight-reading competency, which is highly important for an aspiring musician who needs to face diverse musical problems, is an integral part of becoming a smooth performer. The aims of this systematic literature review concerning piano sight-reading pedagogy approaches between 2019 and 2024 are to determine the strengths and weaknesses of the peer-reviewed literature. The article examines cognitive, behavioral, and technological methods and tools of enhancing learning outcomes, based on the concept of cognitive load, constructivism, and behaviorist perspective. The cognitive strategies highlight the role of hand-eye coordination, short-term memory, and visual process; while the behavioral ones emphasize the importance of daily practice and feedback from the teacher. Emerging technologies, like VR and AI-driven platforms, are redefining education and offering unique ways of learning and forgetting. While achievements of the past are notable, challenges such as access and efficacious long-term approaches remain. The next step of research should be to focus on sustainable teaching methods and international perspectives to achieve homogeneous and effective sight-reading teaching worldwide. This essay provides an overview of integrated and adaptable teaching strategies that combine both traditional and modern tools for the development of versatile and confident musicians’ skills.
Copyright © by EnPress Publisher. All rights reserved.