Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
This article explored mineral resources and their relation to structural settings in the Central Eastern Desert (CED) of Egypt. Integration of remote sensing (RS) with aeromagnetic (AMG) data was conducted to generate a mineral predictive map. Several image transformation and enhancement techniques were performed to Landsat Operational Land Imager (OLI) and Shuttle Radar Topography Mission (SRTM) data. Using band ratios and oriented principal component analysis (PCA) on OLI data allowed delineating hydrothermal alteration zones (HAZs) and highlighted structural discontinuity. Moreover, processing of the AMG using Standard Euler deconvolution and residual magnetic anomalies successfully revealed the subsurface structural features. Zones of hydrothermal alteration and surface/subsurface geologic structural density maps were combined through GIS technique. The results showed a mineral predictive map that ranked from very low to very high probability. Field validation allowed verifying the prepared map and revealed several mineralized sites including talc, talc-schist, gold mines and quartz veins associated with hematite. Overall, integration of RS and AMG data is a powerful technique in revealing areas of potential mineralization involved with hydrothermal processes.
This report deals synthesis of CuInGa (CIG) nano materials along with doctor blade and spin coated thin films selenization and their physical properties. The doctor blade and spin coated CIGS/SLG thin films thicknesses are obtained ̴ 2 μm and ̴ 2.95 μm. Raman spectroscopy of these thin films leads the chalcopyrite phase formation by exhibiting the peak at wave number 171 cm-1. The well developed grain growths of spin coated thin film are appeared in the surface morphology. While the grain growths developments in doctoral blade coated thin film is rather hard and fuzzy. EDS measurement recognised the existence of the compositional ratio presence of the alloying elements Cu, In. Ga and Se. The doctor blade and spin coated CIGS/SLG thin films are exhibited the UV- Visible transmission peak in the wave length range 240 nm 320 nm. The optical energy band gaps for the doctor blade and spin coated CIGS thin films are obtained 1.41eV and 1.5 eV.
Modelling and simulation have now become standard methods that serve to cut the economic costs of R&D for novel advanced systems. This paper introduces the study of modelling and simulation of the infrared thermography process to detect defects in the hydroelectric penstock. A 3-D penstock model was built in ANSYS version 19.2.0. Flat bottom holes of different sizes and depths were created on the inner surface of the model as an optimal scenario to represent the subsurface defect in the penstock. The FEM was applied to mimic the heat transfer in the proposed model. The model’s outer surface was excited at multiple excitation frequencies by a sinusoidal heat flux, and the thermal response of the model was presented in the form of thermal images to show the temperature contrast due to the presence of defects. The harmonic approximation method was applied to calculate the phase angle, and its relationship with respect to defect depth and defect size was also studied. The results confirmed that the FEM model has led to a better understanding of lock-in infrared thermography and can be used to detect subsurface defects in the hydroelectric penstock.
Background: Through the development of robust techniques and their comprehensive validation, cardiac magnetic resonance imaging (CMR) has developed a wide range of indications in its almost 25 years of clinical use. The recording of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars are now part of standard CMR imaging. Recently, the introduction of accelerated image acquisition technologies, the new imaging methods of myocardial T1 and T2 mapping and 4-D flow measurements, and the new post-processing technique of myocardial feature tracking have gained relevance. Method: This overview is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. Results and conclusion: This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical questions.
Copyright © by EnPress Publisher. All rights reserved.