The modification of the Turia River's course in the 1960s marked a pivotal transformation in Valencia's urban landscape, evolving from a flood protection measure into a hallmark of sustainable urban development. However, recent rainfalls and flooding events produced directly by the phenomenon known as DANA ((Isolated Depression at High Levels) in October 2024 have exposed vulnerabilities in the infrastructure, particularly in the rapidly urbanized southern areas, raising questions about the effectiveness of past solutions in the context of climate change and urban expansion. As a result of this fragility, more than 200 deaths have occurred, along with material losses in 87 municipalities, whose industrial infrastructure accounts for nearly one-third of the economic activity in the Province of Valencia, valued at 479.6 million euros. This paper presents, for the first time, a historical-document-based approach to evaluate the successes and shortcomings of Valencia's flood management strategies through policy and spatial planning analysis. Also, this paper remarks the ongoing challenges and potential strategies for enhancing Valencia's urban resilience, emphasizing the need for innovative water management systems, improved drainage infrastructure, and the renaturalization of flood-prone areas. The lessons learned from Valencia's experience in 1957 and 2024 can inform future urban planning efforts in similar contexts facing the dual pressures of environmental change and urbanization.
The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
Entrepreneurial resilience in regions is essential for enabling the entrepreneurial ecosystem to overcome natural disasters, catastrophes, wars, and various crisis situations it may face. However, this phenomenon has been underexplored in the literature despite its critical importance for business development, and consequently, for social progress. Therefore, the objective of this article is to conduct a systematic literature review to identify the antecedents of regional entrepreneurial resilience in situations of adversity. To achieve this goal, a qualitative, descriptive research approach was employed. Specifically, a systematic literature review was carried out following the PRISMA method, which included a total of 231 scientific articles retrieved from high impact journals. Of these, only 12% (27 documents) focused on regional entrepreneurial resilience. Five key antecedents of regional entrepreneurial resilience were identified: action orientation, the region’s historical precedents, opportunity exploitation, collaboration, resources, and preparedness. Additionally, it is suggested that future research should focus on understanding the impact of crises, identifying agile response models to crises, defining roles for each member of the entrepreneurial ecosystem to achieve economic recovery in regions, and analyzing the design of public policies that contribute to overcoming adversity. The study concludes that when a region is resilient, it is more likely to overcome crises and adversity.
This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
Given its insular geographic location, Taiwan inherently benefits from a natural advantage in developing its shipping industry, positioning it as a critical sector for the nation’s economic advancement. The shipping industry operates within a highly competitive maritime market, wherein ocean freight forwarders provide services on a global scale, thus classifying them within the international transportation and logistics industry. The global competition from logistics peers renders the services highly substitutable. This study breaks new ground by integrating the SERVQUAL scale with advanced methodologies such as the Analytic Hierarchy Process (AHP) and Decision-Making Trial and Evaluation Laboratory (DEMATEL) to assess and enhance service quality in the shipping industry. By segmenting the five dimensions of SERVQUAL, the study delineates 19 specific evaluation indicators. The expert questionnaires developed and analyzed through AHP and DEMATEL reveal a previously unidentified link between specific service quality dimensions and customer satisfaction. The findings from this analysis offer crucial insights into the critical success factors (CSFs) of service quality and their causal interrelationships, thereby establishing a model for service standards. By leveraging the identified CSFs and understanding the causal relationships among these key factors, ocean freight forwarders can enhance and optimize their value propositions and resources. This proactive approach is expected to significantly improve service quality, fortify core competitiveness, and elevate customer support and satisfaction levels, ultimately leading to an increased market share and ensuring sustainable business operations.
Copyright © by EnPress Publisher. All rights reserved.