The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
Entrepreneurial resilience in regions is essential for enabling the entrepreneurial ecosystem to overcome natural disasters, catastrophes, wars, and various crisis situations it may face. However, this phenomenon has been underexplored in the literature despite its critical importance for business development, and consequently, for social progress. Therefore, the objective of this article is to conduct a systematic literature review to identify the antecedents of regional entrepreneurial resilience in situations of adversity. To achieve this goal, a qualitative, descriptive research approach was employed. Specifically, a systematic literature review was carried out following the PRISMA method, which included a total of 231 scientific articles retrieved from high impact journals. Of these, only 12% (27 documents) focused on regional entrepreneurial resilience. Five key antecedents of regional entrepreneurial resilience were identified: action orientation, the region’s historical precedents, opportunity exploitation, collaboration, resources, and preparedness. Additionally, it is suggested that future research should focus on understanding the impact of crises, identifying agile response models to crises, defining roles for each member of the entrepreneurial ecosystem to achieve economic recovery in regions, and analyzing the design of public policies that contribute to overcoming adversity. The study concludes that when a region is resilient, it is more likely to overcome crises and adversity.
The coconut industry has deep historical and economic importance in Sri Lanka, but coconut palms are vulnerable to water stress exacerbated by environmental challenges. This study explored using Sunn hemp (Crotalaria juncea L.) in major coconut-growing soils in Sri Lanka to improve resilience to water stress. The study was conducted at the Coconut Research Institute of Sri Lanka to evaluate the growth of Sunn hemp in prominent coconut soils—gravel, loamy, and sandy—to determine its cover crop potential. Sunn hemp was planted in pots with the three soil types, arranged in a randomized, complete design with 48 replicates. Growth parameters like plant height, shoot/root dry weight, root length, and leaf area were measured at 2, 4, 6, and 8 weeks after planting. Soil type significantly impacted all growth parameters. After 8 weeks, sandy soil showed the highest plant height and root length, while loamy soil showed the highest shoot/root dry weight and leaf area, followed by sandy and gravel soils. Nitrogen content at 6 and 8 weeks was highest in loamy soil plants. In summary, Sunn hemp produces more biomass in sandy soils, while loamy soils promote greater nutrient accumulation and growth. This suggests the suitability of Sunn hemp as a cover crop across major coconut-growing soils in Sri Lanka, improving resilience.
This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
Nowadays, customer service in telecommunications companies is often characterized by long waiting times and impersonal responses, leading to customer dissatisfaction, increased complaints, and higher operational costs. This study aims to optimize the customer service process through the implementation of a Generative AI Voicebot, developed using the SCRUMBAN methodology, which comprises seven phases: Objectives, To-Do Tasks, Analysis, Development, Testing, Deployment, and Completion. An experimental design was used with an experimental group and a control group, selecting a representative sample of 30 customer service processes for each evaluated indicator. The results showed a 34.72% reduction in the average time to resolve issues, a 33.12% decrease in service cancellation rates, and a 97% increase in customer satisfaction. The implications of this research suggest that the use of Generative AI In Voicebots can transform support strategies in service companies. In conclusion, the implementation of the Generative AI Voicebot has proven effective in significantly reducing resolution time and markedly increasing customer satisfaction. Future research is recommended to further explore the SCRUMBAN methodology and extend the use of Generative AI Voicebots in various business contexts.
Copyright © by EnPress Publisher. All rights reserved.