This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
It is important for society to know the actions implemented by companies in the construction sector to reduce the environmental pollution generated by this industry and to contribute to the solution of economic and social problems in their environment; however, the variables that allow identifying their contributions and impacts are not known. Based on this problem, the study focuses on identifying the factors that influence sustainability management within the construction sector in Colombia. The research presents a predictive approach and uses a quantitative methodology, applying statistical modeling techniques. The sample corresponds to 84 Colombian companies. As a result, a system of equations of the form y=mx+b is presented to describe the deviation of the environmental, economic, social, compensation measures, management, indicators and sustainability reports. The analysis of the intersections constitutes a projective tool to evaluate the relationships and balance points between the dimensions analyzed, helping to identify strengths and opportunities for improvement.
Purpose: This article explores the adoption of Artificial Intelligence (AI) in Human Resource Management (HRM) in the UAE, focusing on the critical challenges of fairness, bias, and privacy in recruitment processes. The study aims to understand how AI is transforming HR practices in the UAE, highlighting the issues of bias and privacy while examining real-world applications of AI in recruitment, employee engagement, talent management, and learning and development. Methodology: Through case study methodology, detailed insights are gathered from these companies to understand real-world applications of AI in HRM. A comparative analysis is conducted, comparing AI-driven HRM practices in UAE-based organizations with international examples to highlight global trends and best practices. Findings: The research reveals that while AI holds significant potential to streamline HR functions such as recruitment, onboarding, performance monitoring, and talent management, it also discusses challenges and strategies companies face and develop in integrating AI into their HRM processes, reflecting the broader context of AI adoption in the UAE’s HR landscape. Originality: This paper contributes to the growing body of literature on AI in HRM by focusing on the unique context of the UAE, a rapidly developing market with a highly diverse workforce. It highlights the specific challenges and opportunities faced by organizations in the UAE when implementing AI in HRM, particularly regarding fairness, bias, and data privacy.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
This study aims to determine the effect of Human Capital Management (HCM) and work ethics on the performance of life insurance agents mediated by Organizational Citizenship Behavior-Organization (OCB-O) and Organizational Citizenship Behavior-Individual (OCB-I). The data was collected from 103 respondents who had entered the category of having won the Top Agent Awards (TAA) using a survey approach with questionnaires. The population consisted of life insurance agents who had won the TAA/MDRT, a 5 Likert scale questionnaire, and analyses using the SEM-AMOS-21 program. The results prove HCM has a positive significant effect on work ethics; HCM does not have a substantial impact on OCB-O and OCB-I; Work Ethics have a considerable effect on OCB-I and OCB-O; OCB-O and OCB-I have no significant impact on performance; HCM does not have a substantial effect on performance; Work Ethics does not have a considerable impact on performance, however, if OCB-I mediates HCM it will strengthening agent Performance, likewise, Work Ethics if mediated by OCB-I, will strengthening Performance. The findings of this study are that for insurance agents to perform well, companies can treat agents as HCM and work ethics, and it is essential to pay attention to OCB-I as mediation in improving agent performance.
Copyright © by EnPress Publisher. All rights reserved.