This research examines intangible assets or intellectual capital (IC) performance of tourism-related industries in an underexplored area which is a tourism intensively-dependent country. In this study, VAIC which is a monetary valuation method and also the most widely applied measurement method, is utilized as the performance measurement method for quantifying IC performance to monetary values. Moreover, to better understand performance, the standard efficiency levels are further applied for classifying the performance levels of tourism industries. The sample sizes of study are 20 companies operating in the tourism-related industries in the world top travel destination or Thailand, and the companies’ data are collected from 2012 to 2021. Therefore, finally, there are 187 firm-year observations. The utilization of VAIC could assess IC performance of tourism firms and industries, and the standard efficiency levels further support the uniform interpretation of IC efficiency levels. The obtained results show the strong performance of both human and structural capital of the focused tourism dependent country especially in the logistics industry that directly supports and connects to the tourism attractions. Moreover, the finding also highlights the significance of human capital which plays as a major contributor for overall IC performance in this tourism dependent economy. This study contributes the new exploration of IC in the high impact industries and also specifically in the top significant tourism country. Moreover, the application of VAIC also confirms a practical application for management. The limited number of studied countries is a limitation of study. However, these new obtained data and information could be further applied for making comparisons or in-depth or statistical analysis in the future works.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
This study investigates the influence of service quality, destination facilities, destination image, and tourist satisfaction on tourist loyalty in the Pasar Lama Chinatown area of Tangerang City. Utilizing data from 400 respondents, the study employed structured questionnaires analyzed through descriptive statistics, reliability analysis, exploratory and confirmatory factor analysis, and structural equation modeling (SEM). The results reveal that service quality (β = 0.47, p < 0.001), destination facilities (β = 0.33, p < 0.001), and destination image (β = 0.4, p < 0.001) all significantly enhance tourist satisfaction, which in turn has a strong positive effect on loyalty (β = 0.58, p < 0.001). Direct paths also show that service quality, destination facilities, and destination image independently contribute to tourist loyalty. Bootstrapping confirms satisfaction’s mediating role between these factors and loyalty. Practical recommendations suggest prioritizing service quality improvements, facility enhancements, and a positive destination image to foster loyalty and promote tourism sustainability in Pasar Lama, China. These insights assist tourism managers in developing strategies to enhance long-term visitor retention and engagement in the area.
A precise risk assessment in a production line constitutes a significant item to identify susceptible areas where there is a possibility of product quality degradation. This also applies to the precast concrete production line in Indonesia that has a spun pile product. Based on a risk assessment activity conducted in this study, it is proposed to build a traceability model in order to maintain and even improve the spun pile product quality in Indonesia. The approach used was the Neural Network of the perceptron model for weighing and will result in a defined traceability path in the context of reducing defects and even failed spun pile products. The simulation result showed that the model has been able to detect risky path possibilities to reduce product quality. The accumulation result of high-risk and medium-risk paths in this study showed that closer to product finalization, the risk will be higher. It is evident that when assessing Indicators, the order from the highest accumulation value first is Curing & Demolding and Stressing & Spinning at 29% each, Casting at 14%, Forming & Setting at 14%, and lastly Cutting & Heading at 14%. Regarding the risk assessment for activities, the first position is Curing & Demolding and Stressing & Spinning with 30% each, the second is Casting and Forming & Setting with 15% each, and the third is Cutting & Heading with 10%.
This research focuses on patients’ perceptions regarding the accessibility of dental services in Slovenia across four dimensions: financial accessibility, time accessibility, geographical accessibility, and service quality. We observed how specific factors impact accessibility dimensions of dental services in Slovenia, that patients perceive important. A cross-sectional quantitative survey was conducted using proportionate stratified sampling. Data was collected through an online questionnaire, and 599 completed responses were received from patients regarding their experiences and perceptions of accessibility to dental care. A SEM (structural equation model) approach was used to examine the data. The analysis revealed that patients perceive all four dimensions of accessibility: financial, time, geographical, and service quality important and they all constitute the perception of dental accessibility. The findings of this study can assist policymakers in developing a more accessible dental health system by considering the results proposed in our model.
The paper analyzes the corporate carbon emissions and GDP contributions of the top ten companies by turnover for 2020–2023 in Germany, South Korea, China and the United Kingdom. Focusing on Scope 1, 2, and 3, the study explores the contribution of these companies to carbon intensity across different sectors and economies. The analysis shows that there are significant gaps in carbon efficiency, with the UK’s and Germany’s firms emitting the lowest emissions per unit of GDP contribution, followed by China and South Korea. Additionally, the study further examines the impact of Economic Policy Uncertainty on both firm carbon intensity and economic productivity. While EPU is positively associated with GDP contributions, its impact on emissions is nuanced. Firms apparently respond to policy uncertainty by increasing energy efficiency in direct (Scope 1) and energy-related (Scope 2) emissions but find it more difficult to manage supply chain emissions (Scope 3) in that case. The results point out the critical role of comprehensive ESG reporting frameworks in enhancing transparency and addressing Scope 3 emissions, which remain the largest and most volatile component of corporate carbon footprints. The paper then emphasizes the importance of standardized ESG reporting and bespoke policy intervention for promoting sustainability, especially in carbon-intensive industries. This research contributes to the understanding of how industrial and policy frameworks affect carbon efficiency and economic growth in different national contexts.
Copyright © by EnPress Publisher. All rights reserved.