This paper focuses on the analysis of educational institutions’ communication on social media, with an emphasis on the individual type of content used by these institutions to increase engagement and interaction with current and potential students. The authors examine how educational institutions tailor their communication content on Facebook and Instagram to meet the expectations and needs of their target audience. The analysis includes content evaluation, frequency of posts, user interaction, and integration of multimedia elements. In our research we focused on private school segment from kindergartens, through primary to secondary schools. The paper also presents an analysis of the differences of communication on different platforms (Facebook and Instagram) and their impact on the digital communication strategy of private schools. The results suggest that despite the increasing popularity of Instagram and higher interaction, educational institutions are communicating more on Facebook.
To achieve the energy transition and carbon neutrality targets, governments have implemented multiple policies to incentivize electricity suppliers to invest in renewable energy. Considering different government policies, we construct a renewable energy supply chain consisting of electricity suppliers and electricity retailers. We then explore the impact of four policies on electricity suppliers’ renewable energy investments, environmental impacts, and social welfare. We validated the results based on data from Wuxi, Jiangsu Province, China. The results show that government subsidy policies are more effective in promoting electricity suppliers to invest in renewable energy as consumer preferences increase, while no-government policies are the least effective. We also show that electricity suppliers are most profitable under the government subsidy policy and least profitable under the carbon cap-and-trade policy. Besides, our results indicate that social welfare is the worst under the carbon cap-and-trade policy. With the increase in carbon intensity and renewable energy quota, social welfare is the highest under the subsidy policy. However, the social welfare under the renewable energy portfolio standard is optimal when the renewable energy quota is low.
The lack of attention from mining companies to the majority of areas still affected by mining activities can result in regional economic disparities and high levels of social violence. It is crucial to have policy strategies for mining contributions to rural development equity and social violence reduction through CSR assistance and other aid funds. This research employs the Multi-Criteria Decision Analysis method using the MULTIPOL analysis tool. Recommended action programs include the construction of schools, provision of scholarships, job openings, business capital, and infrastructure development, supported by strong regulations and law enforcement. Cracking down on illegal mining permits is essential to reduce environmental damage. Holistic and sustainable integration policies, alongside effective law enforcement, are necessary to achieve the goals of equitable development and social violence reduction. These steps should be reinforced with incentives for traditional/community leaders and increased police/military presence in villages within the next 2 years, particularly in zones 2 and 3 of the mining areas. Failure to implement these measures could escalate social violence, jeopardize security, and impede the operations of mining companies in Kolaka. The findings of this research support the priority of security and orderliness in development and underscore the importance of diverse research methods for mining area development policies.
Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
This research aimed to investigate the role of humanizing leadership in enhancing the effectiveness of change management strategies within organizations. Specifically, it focused on how humanizing leadership influences change outcomes and the extent to which organizational culture moderates this relationship. The study addressed critical questions regarding the impact of leadership behaviors, such as model vulnerability, emotional intelligence, open communication, and psychological safety on effective change management and employee performance. A quantitative approach was employed to provide a comprehensive analysis of the phenomena. Quantitative data were collected from a sample of 325 employees through surveys that measured perceptions of Humanizing leadership behaviors, organizational culture, and change outcomes. Data was analyzed by IBM SPSS 26.0. The findings revealed that humanizing leadership behaviors significantly enhances the success of change initiatives, primarily through improved employee engagement and reduced resistance. Organizational culture was found to play a moderating role, amplifying the positive effects of empathetic and inclusive leadership practices. The study provides actionable recommendations for organizational leaders and managers to foster a culture that supports humanizing leadership. By adopting leadership strategies that emphasize vulnerability, empathy, and inclusivity, organizations can enhance their adaptability and resilience against the backdrop of continuous change. These findings are particularly valuable for enhancing managerial practices and informing policy within corporate settings.
Global trade is based on coordinated factors, that means labor and products are moved from their point of origin to the point of use. Strategies have a significant impact on global trade because they enable the effective development of goods across international borders. The decision making is an important task for the development of Logistics Supply Chain (LSC) infrastructure and process. Decisions on supplier selection, production schedule, transportation routes, inventory levels, pricing strategies, and other issues need to be made. These decisions may have a big influence on customer service, profitability, operational efficiency, and overall competitiveness. The Artificial Intelligence (AI) approach of Fuzzy Preference Ranking Organization Method for Enrichment Evaluation (Fuzzy-Promethee-2) is used to assess the priority selection of the factors associated with the LSC and evaluate the importance in global trade. The role of AI is very useful compare to statistical analysis in terms of decision making. The computational analysis placed promotion of exports as the most important priority out of five selected attributes in LSC, with infrastructure development. The result suggests that LSC depends heavily on export promotion as the most significant attribute. Infrastructural development also appeared another factor influencing LSC. The foreign investment was ranked the lowest. The evaluated results are useful for the policy makers, supply chain managers and the logistics professionals associated with the supply chain management.
Copyright © by EnPress Publisher. All rights reserved.