The paper assesses the threshold at which climate change impacts banking system stability in selected Sub-Saharan economies by applying the panel threshold regression on data spanning 1996 to 2017. The study found that temperature reported a threshold of −0.7316 ℃. Further, precipitation had a threshold of 7.1646 mm, while the greenhouse gas threshold was 3.6680 GtCO2eq. In addition, the climate change index recorded a threshold of −0.1751%. Overall, a non-linear relationship was established between climate change variables and banking system stability in selected Sub-Saharan economies. The study recommends that central banks and policymakers propagate the importance of climate change uncertainties and their threshold effects to banking sectors to ensure effective and stable banking system operations.
In today’s competitive and complex business environment, achieving business excellence requires a combination of effective methodologies and strong leadership to drive and sustain organizational transformation. Lean Six Sigma (LSS), a proven methodology for improving operational efficiency, relies on effective leadership for successful implementation and lasting impact. This study examines how the integration of Lean, Six Sigma, and Total Quality Management (TQM) shapes leadership strategies that enhance organizational agility, resilience, and responsiveness to market dynamics. It highlights the crucial role of leadership in fostering collaboration, optimizing resource utilization, and cultivating a culture of continuous improvement. The study introduces the Structured Lean Leadership Framework as a strategic tool to develop the leadership capabilities essential for LSS success, addressing challenges such as weak leadership commitment, resistance to change, and communication barriers. Through the application of the DMAIC framework, Key Performance Indicators (KPIs), and Voice of Customer (VOC) analysis, the research aligns LSS with business objectives, customer needs, and sustainability goals. Additionally, it explores how combining LSS with Agile methodologies can improve operational efficiency, governance, and innovation, helping organizations better navigate future challenges. This research offers valuable insights for executives, practitioners, and researchers, supporting leadership development, data-driven decision-making, and long-term value creation. Future studies should focus on validating the Structured Lean Leadership Framework, exploring Agile-LSS integration in regulated industries, and examining the impact of Industry 4.0 technologies on LSS and leadership.
In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
The artificial intelligence (AI)-based architect’s profile’s selection (simply iSelection) uses a polymathic mathematical model and AI-subdomains’ integration for enabling automated and optimized human resources (HR) processes and activities. HR-related processes and activities in the selection, support, problem-solving, and just-in-time evaluation of a transformation manager’s or key team members’ polymathic profile (TPProfile). Where a TPProfile can be a classical business manager, transformation manager, project manager, or an enterprise architect. iSelection-related selection processes use many types of artifacts, like critical success factors (CSF), AI-subdomain’ integration environments, and an enterprise-wide decision-making system (DMS). iSelection focuses on TPProfiles for various kinds of transformation projects, like the case of the transformation of enterprises’ HRs (EHR) processes, activities, and related fields, like enterprise resources planning (ERP) environments, financial systems, human factors (HF) evolution, and AI-subdomains. The iSelection tries to offer a well-defined (or specific) TPProfile, which includes HF’s original-authentic capabilities, education, affinities, and possible polymathical characteristics. Such a profile can also be influenced by educational or training curriculum (ETC), which also takes into account transformation projects’ acquired experiences. Knowing that selected TPProfiles are supported by an internal (or external) transformation framework (TF), which can support standard transformation activities, and solving various types of iSelection’s problems. Enterprise transformation projects (simply projects) face extremely high failure rates (XHFR) of about 95%, which makes EHR selection processes very complex.
In wealthy nations, biofuel usage has grown in importance as a means of addressing climate change concerns, ensuring energy security, and promoting agricultural development. Because they understand the potential advantages of biofuel for rural development and job creation, governments have created policies and legislation to encourage the production of biofuel. However, the province of Limpopo hasn’t fully taken advantage of the potential to use biofuel production as a vehicle for job development, despite a higher demand for the fuel. There is currently a lack of understanding of the role of biofuel in promoting local development in developing regions. For this reason, this study made use of semi-structured interviews to explore how biofuel production can be used as an instrument for Local Economic Development (LED) in the Limpopo province of South Africa. The research investigated the determinants of empowerment that could impact the commercial feasibility of biofuel production in the province. It also identified the need for human resource development to get workers ready for jobs in Limpopo’s biofuel sector. The results showed that, provided certain conditions were met, the production of biofuel in Limpopo may be a useful instrument for creating local jobs. By highlighting the potential for job creation and the importance of human resource development, this research aims to facilitate evidence-based decision-making that can harness biofuel production for sustainable rural development in the region. The value of this study lies in its contribution to the understanding of biofuel’s role in LED, offering actionable insights for policymakers and stakeholders in Limpopo.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
Copyright © by EnPress Publisher. All rights reserved.