Six Sigma is an organized and systematic method for strategic process improvement that relies on statistical and scientific methods to reduce the defect rates and achieve significant quality up-gradation. Six Sigma is also a business philosophy to improve customer satisfaction, a tool for eliminating process variation and errors and a metric of world class companies allowing for process comparisons. Six Sigma is one of the most effective advanced improvement strategies which has direct impact on operational excellence of an organization. Six Sigma may also be defined as the powerful business strategies, which have helped to improve quality initiatives in many industries around the world. With the use of Six Sigma in casting industries, rejection rate is reduced, customer satisfaction is improved and financial benefits also increased. Six Sigma management uses statistical process control to relentlessly and rigorously pursue the reduction of variation in all critical processes to achieve continuous and breakthrough improvements that impact the bottom-line and/or top-line of the organization and increase customer satisfaction. In this paper author reviewed some of the significant previous published papers and focused on the general overview of publication in casting industries.
Considering the need to adopt more sustainable agricultural systems, it is important that sweet potato breeding programs seek to increase not only root productivity, but also the productivity and quality of branches for silage production. The objective was to evaluate the genetic divergence and the importance of traits associated with the production and quality of branch silage in sweet potato genotypes. The experiment was conducted on the JK Campus of the Federal University of Vales do Jequitinhonha and Mucuri Valleys in a randomized block design with 12 treatments and four repetitions. Twelve characteristics of branches and silage were evaluated. There was genetic variability between the genotypes, making it possible to select parents divergent for future breeding programs for silage production. The genotypes BD-54 and BD-31TO were the most divergent in relation to the others, being indicated its use in crossbreeding aiming the improvement of the culture for silage, once the high performance per se of all genotypes evaluated has already been verified in previous works. The characteristics Na, TDN and NDF were those that most contributed to the divergence.
In order to improve the quality and efficiency of heat treatment in welds of power stations, this paper summarizes the current situation of 600 MW supercritical power plant welding site heat treatment and puts forward the improved methods and measures accordingly. The heat treatment of welding holes in the construction site Play a certain guiding role.
Copyright © by EnPress Publisher. All rights reserved.