Cities are no longer viewed as creatures with a linear-climax-established cycle but as ecosystems with dynamic and complicated processes, with people as the primary component. Thus, we must understand urban ecology’s structure and function to create urban planning and appreciate the mechanisms, dynamics, and evolution that connect human and ecological processes. The ecological city (ecocity) is one of the city conceptions that has evolved with the perspective of urban ecology history. The concept of ecocity development within urban ecology systems pertains to recognizing cities as complex ecosystems primarily influenced by human activities. In this context, individuals actively engage in dynamic problem-solving approaches to address environmental challenges to ensure a sustainable and satisfactory quality of life for future generations. Therefore, it is necessary to study how ecocity has developed since it was initiated today and how it relates to the urban ecology perspective. This study aims to investigate the progression of scholarly publications on ecocity research from 1980 to 2023. Additionally, it intends to ascertain the trajectory of ecological city research trends, establish connections between scientific concepts, and construct an ecological city science network using keyword co-occurrence analysis from the urban ecology perspective. The present study used a descriptive bibliometric analysis and literature review methodology. The data was obtained by utilizing the Lens.org database, was conducted using the VOS (Visualization of Similarities) viewer software for data analysis. The urban ecology research area ecology of cities can be studied further from density visualization of ecosystem services and life cycle assessment. Finally, the challenges and future agenda of ecocity research include addressing humans by modeling functions or processes that connect humans with ecosystems (ecology of cities), urban design, ecological imperatives, integration research, and improving the contribution to environmental goals, spatial distribution, agriculture, natural resources, policy, economic development, and public health.
Shore line change is considered as one of the most dynamic processes, which were mapped along the coast of Tiruvallur district by using topographic maps of 1976 and multi-temporal satellite images. The satellite images pertaining to 1988, 1991, 2006, 2010, 2013 and 2016 were used to extract the shorelines. It is important to map and monitor the HTL (High Tide Line) at frequent time intervals as the shoreline was demarcated by using visual interpretation technique from satellite images and topographic maps. Followed by this, an overlay analysis was performed to calculate areas of erosion and accretion in the study area. The results revealed that the coast of Tiruvallur district lost 603 ha and gained 630 ha due to erosion and accretion respectively. It was confirmed after the ground truth survey carried out in the study area. The high accretion of 178 ha was found nearby Pulicat Lake and low accretion of 19 ha was seen between Pulicat Lake and Kattupali Port. The high erosion area was found along the Pulicat Lake, Kattupali and Ennore ports, and Ennore creek mouth and southern Ennore such as Periya Kuppam, Chinna Kuppam, Kasi Koil Kuppam, and Thyagarajapuram. It may be concluded that the coastal erosion and accretion in the study area were mainly caused by anthropogenic and natural factors, which altered the coastal environment.
The changes the magnetic flux generated (electric, magnetic and electromagnetic waves) on the surface of earth due to sudden changes is a matter of discussion. These emissions occur along the fault line generated due to geological and tectonic processes. When sudden changes occur in the environment due to seismic and atmospheric variations, these sensing was observed by creatures and human bodies because the animals and trees adopt the abnormal signals and change the behavior. We have analyzed the changing behavior of recorded signal by live sensors (i.e., banyan tree). So we use the deep-rooted and long-aged banyan tree. The root of banyan tree (long-aged) has been working as a live sensor to record the geological and environmental changes. We record the low frequency signals propagated through solar-terrestrial environment which directly affect the root system of the banyan tree and changes that have been observed by live sensors. Then, very low frequency (VLF) signal may propagate to the earth-ionosphere waveguide. We have also analyzed the different parameters of live cells which is inbuilt in latex of the tree, so we record the dielectric parameters of green stem latex and found some parameters i.e., dielectric constant (ε) and dielectric loss (ε’) of various trees to verify these natural hazards and found good correlation. Therefore, we can say by regularly monitoring the bio-potential signal and dielectric properties of banyan tree and we are able to find the precursory signature of seismic hazards and environmental changes.
Copyright © by EnPress Publisher. All rights reserved.