Companies are impacted by toxic leadership phenomena, resulting in many dissatisfied employees, low morale, and reduced progress. The fundamental mismatch between good leadership and harmful actions of toxic leaders is the primary cause of the problem. Toxic leadership can also be developed from narcissistic behavior of considering personal interests or using humiliation to maintain power. In this context, employees are negatively affected, resulting in higher stress levels, poorer job satisfaction, and a significant decrease in trust. Therefore, this research aims to explore the impact of toxic leadership and other factors on companies. The sample consists of 187 senior employees in the accounting department who worked in manufacturing companies. The results showed that toxic leadership influences role stress, while role stress affects emotional exhaustion and reactive work behavior. Moreover, future research should be conducted using other samples such as hospital employees or pay attention to other aspects related to role stress.
The sustainable development of the global economy and society necessitates the integration of environmental and socially responsible management, known as ESG (environmental, social, and corporate governance). Despite growing recognition of ESG’s importance, the strategic management of ESG factors in Kazakhstan’s telecommunications industry remains underexplored. This study bridges this gap by analyzing Kazakh telecom’s ESG strategies from 2019 to 2021 through a cross-sectional design and semi-structured interviews with 12 industry experts. Utilizing the National Rating Agency (NRA) methodology, the research evaluates environmental, social, and governance variables. Key findings reveal that Kazakh telecom excels in “Climate Change” and “Human Capital Management” but needs significant improvements in “Environmental Impact” and “Society.” The study offers specific recommendations such as enhancing corporate volunteering, responsible marketing, service quality, and integrating sustainable practices. The primary contributions of this research include actionable insights for improving ESG strategies in telecommunications companies and advocating for more systematic and standardized ESG assessment approaches. This study expands the understanding of how ESG principles can enhance competitiveness and sustainable development in the telecommunications industry, providing valuable guidance for industry practitioners and policymakers. It offers insights into effective ESG implementation practices and highlights critical areas requiring attention to drive sustainable development in telecommunications.
The following paper assesses the relationship between electricity consumption, economic growth, environmental pollution, and Information and Communications Technology (ICT) development in Kazakhstan. Using the structural equation method, the study analyzes panel data gathered across various regions of Kazakhstan between 2014 and 2022. The data were sourced from official records of the Bureau of National Statistics of Kazakhstan and include all regions of Kazakhstan. The chosen timeframe includes the period from 2014, which marked a significant drop in oil prices that impacted the overall economic situation in the country, to 2022. The main hypotheses of the study relate to the impact of electricity consumption on economic growth, ICT, and environmental sustainability, as well as ICT’s role in economic development and environmental impact. The results show electricity consumption’s positive effect on economic growth and ICT development while also revealing an increase in pollutant emissions (emissions of liquid and gaseous pollutants) with economic growth and electricity consumption. The development of ICT in Kazakhstan has been revealed to not have a direct effect on reducing pollutant emissions into the environment, raising important questions about how technology can be leveraged to mitigate environmental impact, whether current technological advancements are sufficient to address environmental challenges, and what specific measures are needed to enhance the environmental benefits of ICT. There is a clear necessity to integrate sustainable practices and technologies to achieve balanced development. These results offer important insights into the relationships among electricity consumption, technology, economic development, and environmental issues. They underscore the complexity and multidimensionality of these interactions and suggest directions for future research, especially in the context of finding sustainable solutions for balanced development.
The food industry progressively requires innovative and environmentally safe packaging materials with increased physical, mechanical, and barrier properties. Due to its unique properties, cellulose has several potential applications in the food industry as a packaging material, stabilizing agent, and functional food ingredient. A coffee pod is a filter of cellulosic, non-rigid, ready-made material containing ground portions and pressed coffee prepared in dedicated machines. In our study, we obtained, with homogenization and sonication, cellulose micro/nanoparticles from three different coffee pods. It is known that nanoparticulate systems can enter live cells and, if ingested, could exert alterations in gastrointestinal tract cells. Our work aims to investigate the response of HT-29 cells to cellulose nanoparticles from coffee pods. In particular, the subcellular effects between coffee-embedded nanocellulose (CENC) and cellulose nanoparticles (NC) were compared. Finally, we analysed the pathologic condition (Cytolethal Distending Toxin (CDT) from Campylobacter jejuni) on the same cells conditioned by NC and CENC. We evidenced that, for the cellular functional features analysed, NC and CENC pre-treatments do not worsen cell response to the C. jejuni CDT, also pointing out an improvement of the autophagic flux, particularly for CENC preconditioning.
Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
Copyright © by EnPress Publisher. All rights reserved.