Implementing green retrofitting can save 50–90% of energy use in buildings built worldwide. Government policies in several developed countries have begun to increase the implementation of green retrofitting buildings in those countries, which must rise by up to 2.5% of the lifespan of buildings by 2030. By 2050, it is hoped that more than 85% of all buildings will have been retrofitted. The high costs of implementing green retrofitting amounting to 20% of the total initial construction costs, as well as the uncertainty of costs due to cost overruns are one of the main problems in achieving the implementation target in 2050. Therefore, increasing the accuracy of the costs of implementing green retrofitting is the best solution to overcome this. This research is limited to analyzing the factors that influence increasing the accuracy of green retrofitting costs based on WBS, BIM, and Information Systems. The results show that there are 10 factors affecting the cost accuracy of retrofitting or customizing high-rise office buildings, namely Energy Use Efficiency, Water Use Efficiency, Use of Environmentally Friendly Materials, Maintenance of Green Building Performance during the Use Period, Initial Survey, Project Information Documents, Cost Estimation Process, Resources, Legal, and Quantity Extraction applied. These factors are shown to increase the accuracy of green retrofitting costs.
Scholars widely agree that modular technologies can significantly improve environmental sustainability compared to traditional building methods. There has been considerable debate about the viability of replacing traditional cast-in-place structures with modular construction projects. The primary purpose of this study is to determine the feasibility of using modular technology for construction projects in island areas. Thus, it is necessary to investigate the potential problems and suitable solutions associated with modular building project implementation. This study is accomplished through the use of qualitative and quantitative methods. It systematically examines desk research based on the wide academic literature and real case studies, collating secondary data from government files, news articles, professional blogs, and interviews. This research identifies several important barriers to the use of modular construction projects. Among the issues are the complexity of stakeholder engagement, limited practical skills and construction methodologies, and a scarcity of manufacturing capacity specialised for modular components. Fortunately, these unresolved challenges can be mitigated through fiscal incentives and governmental regulations, induction training programmes, efficient management strategies, and adaptive governance approaches. As a result, the findings support the feasibility of starting and advancing modular building initiatives in island areas. Project developers will likely be more willing to embrace and commit resources to initiate modular building projects. Additional studies can be undertaken to acquire the most recent first-hand data for detailed validation.
The recent development of characteristic towns has encountered a multitude of challenges and chaos. Nevertheless, there have been many instances of information asymmetry due to the absence of an effective management model and an intuitive digital management system. Consequently, this has caused the erosion of public interests and inadequate supervision by public agencies. As society is progressing at a rapid pace, there is a growing apprehension regarding poor management synergy, outdated management practices, and limited use of technology in traditional construction projects. In today's technologically sophisticated society characterized by the “Internet+” and intelligent management, there is an urgent requirement to identify a more efficient collaborative management model, thereby reducing errors caused by information asymmetry. This paper focuses on the integration of building information modeling (BIM) and integrated project delivery (IPD) for collaborative management within characteristic towns in the PPP mode. By analyzing the available literature on the application status, this study investigates the implementation methods and framework construction of collaborative management while exploring the advantages and disadvantages. On this basis, this study highlights the problems that arise and provides recommendations for improvement. Considering this, the application of the BIM-based IPD model to characteristic towns in PPP mode will enhance the effectiveness of collaborative management among all parties involved, thereby fostering an environment that facilitates decision-making and operational management in the promotion of characteristic industries.
Copyright © by EnPress Publisher. All rights reserved.