The world has complex mega-cities and interdependent infrastructures. This complication in infrastructure relations makes it sensitive to disasters and failures. Cascading failure causes blackouts for the whole system of infrastructures during disasters and the lack of performance of the emergency management stakeholders is clear during a disaster due to the complexity of the system. This research aimed to develop a new concurrent engineering model following the total recovery effort. The objectives of this research were to identify the clustered intervention utilized in the field of resilience and developing a cross-functional intervention network to enhance the resilience of societies during a disaster. Content analysis was employed to classify and categorize the intervention in the main divisions and sub-divisions and the grouping of stakeholders. The transposing system was employed to develop an integrated model. The result of this research showed that the operations division achieved the highest weight of information interchange during the response to improve the resilience of the system. The committee of logistics and the committee of rescue and relief needed the widest bandwidth of information flow in the concurrent engineering (CE) model. The contributed CE model helped the stakeholders provide a resilient response system. The final model and the relative share value of exchanging information for each workgroup can speed up recovery actions. This research found that concurrent engineering (CE) is a viable concept to be implemented as a strategy for emergency management. The result of this research can help policymakers achieve a collaborative teamwork environment and to improve resilience factors during emergency circumstances for critical infrastructures.
The expansion of road networks, taken place during the last decades, was driven by technological progress and economic growth. The most innovative products of this trend—modern motorways and international road corridors—provide an excellent level of service, traffic safety and necessary information to travelers. However, despite this undeniable progress, major impediments and respective challenges to road authorities and operators still remain. The present paper analytically presents the main current challenges in the road engineering field, namely: a) financing new projects, b) alternative energy resources, especially renewable energy, c) serviceability, including maintenance of road infrastructure, traffic congestion and quality of the network, d) climate change hazards due to greenhouse gas emissions increase, e) environmental impacts, f) safety on roads, streets and motorways, and g) economy and cost-effectiveness. In each country and over each network, challenges and concerns may vary, but, in most cases, competent authorities, engaged in road development policies, have to deal with most of these issues. The optimization of the means to achieve the best results seems to be an enduring stake. In the present paper, the origin and the main features of these challenges are outlined as well as their tendency to get amplified or diminished under the actual evolving economic conditions worldwide, where growth alternates with crisis and social hardship. Moreover, responses, meant to provide solutions to the said challenges, are suggested, including research findings of Aristotle University and innovative technological achievements, to drive the transition to a more sustainable future.
Attempts were made in the present study to design and develop skeletally modified ether linked tetraglycidyl epoxy resin (TGBAPSB), which is subsequently reinforced with different weight percentages of amine functionalized mullite fiber (F-MF). The F-MF was synthesized by reacting mullite fiber with 3-aminopropyltriethoxysilane (APTES) as coupling agent and the F-MF structure was confirmed by FT-IR. TGBAPSB reinforced with F-MF formulation was cured with 4,4’-diamino diphenyl methane (DDM) to obtain nanocomposite. The surface morphology of TGBAPSB-F-MF epoxy nanocomposites was investigated by XRD, SEM and AFM studies. From the study, it follows that these nanocomposite materials offer enhancement in mechanical, thermal, thermo-mechanical, dielectric properties compared to neat (TGBAPSB) epoxy matrix. Hence we recommend these nanocomposites for a possible use in advanced engineering applications that require both toughness and stiffness.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
Copyright © by EnPress Publisher. All rights reserved.