Falling is one of the most critical outcomes of loss of consciousness during triage in emergency department (ED). It is an important sign requires an immediate medical intervention. This paper presents a computer vision-based fall detection model in ED. In this study, we hypothesis that the proposed vision-based triage fall detection model provides accuracy equal to traditional triage system (TTS) conducted by the nursing team. Thus, to build the proposed model, we use MoveNet, a pose estimation model that can identify joints related to falls, consisting of 17 key points. To test the hypothesis, we conducted two experiments: In the deep learning (DL) model we used the complete feature consisting of 17 keypoints which was passed to the triage fall detection model and was built using Artificial Neural Network (ANN). In the second model we use dimensionality reduction Feature-Reduction for Fall model (FRF), Random Forest (RF) feature selection analysis to filter the key points triage fall classifier. We tested the performance of the two models using a dataset consisting of many images for real-world scenarios classified into two classes: Fall and Not fall. We split the dataset into 80% for training and 20% for validation. The models in these experiments were trained to obtain the results and compare them with the reference model. To test the effectiveness of the model, a t-test was performed to evaluate the null hypothesis for both experiments. The results show FRF outperforms DL model, and FRF has same accuracy of TTS.
This study aims to identify the causes of delays in public construction projects in Thailand, a developing country. Increasing construction durations lead to higher costs, making it essential to pinpoint the causes of these delays. The research analyzed 30 public construction projects that encountered delays. Delay causes were categorized into four groups: contractor-related, client-related, supervisor-related, and external factors. A questionnaire was used to survey these causes, and the Relative Importance Index (RII) method was employed to prioritize them. The findings revealed that the primary cause of delays was contractor-related financial issues, such as cash flow problems, with an RII of 0.777 and a weighted value of 84.44%. The second most significant cause was labor issues, such as a shortage of workers during the harvest season or festivals, with an RII of 0.773. Additionally, various algorithms were used to compare the Relative Importance Index (RII) and four machine learning methods: Decision Tree (DT), Deep Learning, Neural Network, and Naïve Bayes. The Deep Learning model proved to be the most effective baseline model, achieving a 90.79% accuracy rate in identifying contractor-related financial issues as a cause of construction delays. This was followed by the Neural Network model, which had an accuracy rate of 90.26%. The Decision Tree model had an accuracy rate of 85.26%. The RII values ranged from 68.68% for the Naïve Bayes model to 77.70% for the highest RII model. The research results indicate that contractor financial liquidity and costs significantly impact construction operations, which public agencies must consider. Additionally, the availability of contractor labor is crucial for the continuity of projects. The accuracy and reliability of the data obtained using advanced data mining techniques demonstrate the effectiveness of these results. This can be efficiently utilized by stakeholders involved in construction projects in Thailand to enhance construction project management.
The paper considers an important problem of the successful development of social qualities in an individual using machine learning methods. Social qualities play an important role in forming personal and professional lives, and their development is becoming relevant in modern society. The paper presents an overview of modern research in social psychology and machine learning; besides, it describes the data analysis method to identify factors influencing success in the development of social qualities. By analyzing large amounts of data collected from various sources, the authors of the paper use machine learning algorithms, such as Kohonen maps, decision tree and neural networks, to identify relationships between different variables, including education, environment, personal characteristics, and the development of social skills. Experiments were conducted to analyze the considered datasets, which included the introduction of methods to find dependencies between the input and output parameters. Machine learning introduction to find factors influencing the development of individual social qualities has varying dependence accuracy. The study results could be useful for both practical purposes and further scientific research in social psychology and machine learning. The paper represents an important contribution to understanding the factors that contribute to the successful development of individual social skills and could be useful in the development of programs and interventions in this area. The main objective of the research was to study the functionalities of the machine learning algorithms and various models to predict the students’s success in learning.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
A method for studying the resilience of energy and socio-ecological systems is considered; it integrates approaches developed at the International Institute of Applied Systems Analysis and the Melentyev Institute of Energy Systems (MESI) of the Siberian Branch of the Russian Academy of Sciences. The article discusses in detail the methods of using intelligent information technologies, in particular semantic technologies and knowledge engineering (cognitive probabilistic modeling), which the authors propose to use in assessing the risks of natural and man-made threats to the resilience of the energy sector and social and ecological systems. More attention is paid to the study and adaptation of the integral indicator of quality of life, which makes it possible to combine these interdisciplinary studies.
Money laundering has become a vital issue all over the world especially in the emerging economy over the last two decades. Till now, the developing and emerging countries face challenges about the remedies and inceptions of anti-money laundering issues. The objective of the study is to provide a thorough picture of the diversified movements of academic research on money laundering and anti-money laundering activities all over the world. This study aims at exploring the contemporary issues in Anti-money laundering based on the academic points of view. Further, the study is explored to render a portrayal of anti-money laundering activities from an emergency country context. A review of publicly available reports, published documents, daily newspapers, case studies, and previous academic research comprised the main sources of data for the study. It is found that the contemporary money laundering and anti-money laundering academic research might be classified into four broad categories. An emerging country like Bangladesh has taken little initiative to inductee anti-money laundering initiatives. It implies that for the successful implementation of anti-money laundering activities, good governance along with a congenial regulatory framework is a prerequisite in an emerging country context. In addition, the machine learning may enhance the quality of money laundering detections in Bangladesh.
Copyright © by EnPress Publisher. All rights reserved.