This study meticulously explores the crucial elements precipitating corporate failures in Taiwan during the decade from 1999 to 2009. It proposes a new methodology, combining ANOVA and tuning the parameters of the classification so that its functional form describes the data best. Our analysis reveals the ten paramount factors, including Return on Capital ROA(C) before interest and depreciation, debt ratio percentage, consistent EPS across the last four seasons, Retained Earnings to Total Assets, Working Capital to Total Assets, dependency on borrowing, ratio of Current Liability to Assets, Net Value Per Share (B), the ratio of Working Capital to Equity, and the Liability-Assets Flag. This dual approach enables a more precise identification of the most instrumental variables in leading Taiwanese firms to bankruptcy based only on financial rather than including corporate governance variable. By employing a classification methodology adept at addressing class imbalance, we substantiate the significant influence these factors had on the incidence of bankruptcy among Taiwanese companies that rely solely on financial parameters. Thus, our methodology streamlines variable selection from 95 to 10 critical factors, improving bankruptcy prediction accuracy and outperforming Liang’s 2016 results.
This paper investigates the factors influencing credit growth in Kosovo, focusing on the relationship between credit activity and key economic variables, including GDP, FDI, CPI, and interest rates. Its analysis targets loans issued to businesses and households in Kosovo, employing a VAR model integrated into a VEC model to investigate the determinants of credit growth. The findings were validated using OLS regression. Additionally, the study includes a normality test, a model stability test (Inverse Roots AR Characteristic Polynomial), a Granger causality test for short-term relationships, and variance decomposition to analyze variable shocks over time. This research demonstrates that loan growth is primarily driven by its historical values. The VEC model shows that, in the long run, economic growth in Kosovo leads to less credit growth, showing a negative link between it and GDP. Higher interest rates also reduce credit growth, showing another negative link. On the other hand, more foreign direct investment (FDI) increases credit demand, showing a positive link between credit growth and FDI. The results show that loans and inflation (CPI) are positively linked, meaning higher inflation leads to more credit growth. Similarly, more foreign direct investment (FDI) increases credit demand, showing a positive link between FDI and credit growth. In the long term, higher inflation is connected to greater credit growth. In the short term, the VAR model suggests that GDP has a small to moderate effect on loans, while FDI has a slightly negative effect. In the VAR model, interest rates have a mixed effect: one coefficient is positive and the other negative, showing a delayed negative impact on loan growth. CPI has a small and negative effect, indicating little short-term influence on credit growth. The OLS regression supports the VAR results, finding no effect of GDP on loans, a small negative effect from FDI, a strong negative effect from interest rates, and no effect from CPI. This study provides a detailed analysis and adds to the research by showing how macroeconomic factors affect credit growth in Kosovo. The findings offer useful insights for policymakers and researchers about the relationship between these factors and credit activity.
Many financial crises have occurred in recent decades, such as the International Debt Crisis of 1982, the East Asian Economic Crisis of 1997–2001, the Russian economic crisis of 1992–1997, the Latin American debt Crisis of 1994–2002, the Global Economic Recession of 2007–2009, which had a strong impact on international relations. The aim of this article is to create an econometric model of the indicator for identifying crisis situations arising in stock markets. The approach under consideration includes data for preprocessing and assessing the stability of the trend of time series using higher-order moments. The results obtained are compared with specific practical situations. To test the proposed indicator, real data of the stock indices of the USA, Germany and Hong Kong in the period World Financial Crisis are used. The scientific novelty of the results of the article consists in the analysis of the initial and given initial moments of high order, as well as the central and reduced central moments of high order. The econometric model of the indicator for identifying crisis situations arising considered in the work, based on high-order moments plays a pivotal role in crisis detection in stock markets, influencing financial innovations in managing the national economy. The findings contribute to the resilience and adaptability of the financial system, ultimately shaping the trajectory of the national economy. By facilitating timely crisis detection, the model supports efforts to maintain economic stability, thereby fostering sustainable growth and resilience in the face of financial disruptions. The model’s insights can shape the national innovation ecosystem by guiding the development and adoption of monetary and financial innovations that are aligned with the economy’s specific needs and challenges.
Brain tumors are a primary factor causing cancer-related deaths globally, and their classification remains a significant research challenge due to the variability in tumor intensity, size, and shape, as well as the similar appearances of different tumor types. Accurate differentiation is further complicated by these factors, making diagnosis difficult even with advanced imaging techniques such as magnetic resonance imaging (MRI). Recent techniques in artificial intelligence (AI), in particular deep learning (DL), have improved the speed and accuracy of medical image analysis, but they still face challenges like overfitting and the need for large annotated datasets. This study addresses these challenges by presenting two approaches for brain tumor classification using MRI images. The first approach involves fine-tuning transfer learning cutting-edge models, including SEResNet, ConvNeXtBase, and ResNet101V2, with global average pooling 2D and dropout layers to minimize overfitting and reduce the need for extensive preprocessing. The second approach leverages the Vision Transformer (ViT), optimized with the AdamW optimizer and extensive data augmentation. Experiments on the BT-Large-4C dataset demonstrate that SEResNet achieves the highest accuracy of 97.96%, surpassing ViT’s 95.4%. These results suggest that fine-tuning and transfer learning models are more effective at addressing the challenges of overfitting and dataset limitations, ultimately outperforming the Vision Transformer and existing state-of-the-art techniques in brain tumor classification.
Indonesia, as a maritime country, has many coastal areas with fishing villages that have significant potential, especially in sociological, economic, and environmental aspects, to be developed as models for sustainable development. Indonesia, with its long-standing fishing traditions, showcases the abundant potential and traditional that could help address global challenges such as climate change, rapid urbanization, and environmental and economic issues. This study aims to develop a conceptual model for sustainable cities and communities based on local potential and Wisdom towards the establishment of a Blue Village in the fishing village of Mundu Pesisir, Cirebon, Indonesia. The urgency of this study lies in the importance of developing sustainable strategies to address these challenges in coastal towns. This study involves an interdisciplinary team, including experts in sociology, social welfare, architecture, law, economics, and information technology. Through the identification of local natural and sociocultural resources, as well as the formulation of sustainable development strategies, this study develops a conceptual Blue Village model that can be applied to other coastal villages. The method employed in this study is qualitative descriptive, involving the steps of conducting a literature review, analyzing local potential, organizing focus group discussions, conducting interviews, and finalizing the conceptual model. The study employed, a purposive sampling technique, involving 110 participants. The results of the study include the modeling of a sustainable city and community development based on local potential and Wisdom aimed at creating Blue Villages in Indonesia, and It is expected to make a significant contribution to the creation of competitive and sustainable coastal areas capable of addressing the challenges of climate change and socioeconomic dynamics in the future.
This study uses a Time-Varying Parameter Stochastic Volatility Vector Autoregression (TVP-SV-VAR) model to conduct an empirical analysis of the dynamic effects of China’s stock market volatility on the agricultural loan market and its channels. The results show that the relationship between stock market and agricultural loan market volatility is time varying and is always positive. The investor sentiment is a major conduit through which the effect takes place. This time-varying effect and transmission mechanism are most apparent between 2011 and 2017 and have since waned and stabilized. These have significant implications for the stable and orderly development of the agricultural loan market, highlighting the importance of the sound financial market system and timely policy, better market monitoring and early warning system and the formation of a mature and sound agricultural credit mechanism.
Copyright © by EnPress Publisher. All rights reserved.