The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
UAVs, also known as unmanned aerial vehicles, have emerged as an efficient and flexible system for offering a rapid and cost-effective solution. In recent years, large-scale mapping using UAV photogrammetry has gained significant popularity and has been widely adopted in academia as well as the private sector. This study aims to investigate the technical aspects of this field, provide insights into the procedural steps involved, and present a case study conducted in Cesme, Izmir. The findings derived from the case study are thoroughly discussed, and the potential applications of UAV photogrammetry in large-scale mapping are examined. The study area is divided into 12 blocks. The flight plans and the distribution of ground control point (GCP) locations were determined based on these blocks. As a result of the data processing procedure, average GCP positional errors ranging from 1 to 18 cm have been obtained for the blocks.
The boom in nanotechnology over the last three decades is undeniable. Responsible for this interest in nanomaterials are mainly the nanostructured forms of carbon, since historically they were the ones that inaugurated the study of nanomaterials with the discovery of fullerenes in 1985 and carbon nanotubes in 1991. Although a variety of techniques exist to produce these materials, chemical vapor deposition (CVD) is particularly valuable as it allows the production of a wide variety of carbon nanostructures, is versatile, scalable, easy to implement and relatively low cost. This review article highlights the importance of CVD and details its principles, operating conditions and parameters, as well as its main variants. A description of the technique used to produce fullerenes, nano-ceramics, carbon nanotubes, nanospheres, graphene and others is made, emphasizing the specific parameters for each synthesis.
To deal with problems of traditional geographic information collection, such as low real-time, poor authenticity of the data, and unclear description of detailed areas, a design scheme of remote sensing-based geographic information system is proposed. The system mainly consists of information collection, imaging processing, data storage management, scene control and data transmission module. By use of remote sensing technology, the reflected and radiated electromagnetic waves of the target area are collected from a long distance to form an image, and the hue–intensity–saturation (HIS) transformation method is used to enhance the image definition. Weighted fusion algorithm is adopted to process the details of the image. The spatial database stores and manages the text and image data respectively, and establishes the attribute self-correlation mechanism to render the ground objects in the picture with SketchUp software. Finally, using RS422 protocol to transmit information can achieve the effect of multi-purpose, and enhance the anti-interference of the system. The experimental results show that the practical experience of the proposed system is excellent, the geographic information image presented is clear, and the edge details are clearly visible, which can provide users with effective geographic information data.
It increased the demands on ground-water supplies that prolonged drought and improper maintenance of water resources. So it is necessary to evaluate ground-water resources in the hard rock terrain. In recent years, Remote-Sensing methods have been increasingly recognized as a means of obtaining crucial geoscientific data for both regional and site-specific investigations. This work aims to develop and apply integrated methods combining the information obtained by geo-hydrological field mapping and those obtained by analyzing multi-source remotely sensed data in a GIS environment for better understanding the Groundwater condition in hard rock terrain. In this study, digitally enhanced Landsat ETM+ data was used to extract information on geology, geomorphology. The Hill-Shading techniques are applied to SRTM DEM data to enhance terrain perspective views, and extract Geomorphological features and morphologically defined structures through the means of lineament analysis. A combination of Spectral information from Landsat ETM+ data plus spatial information from SRTM-DEM data is used to address the groundwater potential of alluvium, colluvium, and fractured crystalline rocks in the study area. The spatial distribution of groundwater potential zones shows regional patterns related to lithologies, lineaments, drainage systems, and landforms. High-yielding wells and springs are often related to large lineaments and corresponding structural features such as dykes. The results show that the combination of remote sensing, GIS, traditional fieldwork, and models provide a powerful tool for water resources assessment and management, and groundwater exploration planning.
Forests have ecological functions in water conservation, climate regulation, environmental purification, soil and water conservation, biodiversity protection and so on. Carrying out forest ecological quality assessment is of great significance to understand the global carbon cycle, energy cycle and climate change. Based on the introduction of the concept and research methods of forest ecological quality, this paper analyzes and summarizes the evaluation of forest ecological quality from three comprehensive indicators: forest biomass, forest productivity and forest structure. This paper focuses on the construction of evaluation index system, the acquisition of evaluation data and the estimation of key ecological parameters, discusses the main problems existing in the current forest ecological quality evaluation, and looks forward to its development prospects, including the unified standardization of evaluation indexes, high-quality data, the impact of forest living environment, the acquisition of forest level from multi-source remote sensing data, the application of vertical structural parameters and the interaction between forest ecological quality and ecological function.
Copyright © by EnPress Publisher. All rights reserved.