Scholars widely agree that modular technologies can significantly improve environmental sustainability compared to traditional building methods. There has been considerable debate about the viability of replacing traditional cast-in-place structures with modular construction projects. The primary purpose of this study is to determine the feasibility of using modular technology for construction projects in island areas. Thus, it is necessary to investigate the potential problems and suitable solutions associated with modular building project implementation. This study is accomplished through the use of qualitative and quantitative methods. It systematically examines desk research based on the wide academic literature and real case studies, collating secondary data from government files, news articles, professional blogs, and interviews. This research identifies several important barriers to the use of modular construction projects. Among the issues are the complexity of stakeholder engagement, limited practical skills and construction methodologies, and a scarcity of manufacturing capacity specialised for modular components. Fortunately, these unresolved challenges can be mitigated through fiscal incentives and governmental regulations, induction training programmes, efficient management strategies, and adaptive governance approaches. As a result, the findings support the feasibility of starting and advancing modular building initiatives in island areas. Project developers will likely be more willing to embrace and commit resources to initiate modular building projects. Additional studies can be undertaken to acquire the most recent first-hand data for detailed validation.
Silymarin, a bioactive compound derived primarily from the seeds and fruit of the milk thistle (Silybum marianum) plant, has garnered increasing attention in recent years due to its potential applications in agriculture. This comprehensive review explores the multifaceted role of silymarin in agricultural practices, shedding light on its chemistry, biological activities, and diverse applications. The chemical structure and properties of silymarin are elucidated, emphasizing its unique solubility, stability, and bioavailability, which render it suitable for agricultural use. A significant portion of the review is dedicated to examining the biological activities of silymarin, which encompasses its antioxidant properties. The underlying mechanisms responsible for these activities are explored, highlighting their potential as a natural solution for mitigating environmental stressors that adversely affect crop health and productivity. Illustrative examples from research studies and practical applications underscore its effectiveness in safeguarding agricultural yields and ensuring food security. Furthermore, the review delves into the potential of silymarin to enhance crop growth, yield, and quality. Mechanisms through which silymarin influences plant physiology and metabolism are examined, providing valuable insights into its role as a growth-promoting agent in agriculture. The review concludes with a forward-looking examination of the prospects of silymarin in agriculture, highlighting emerging trends and areas of innovation that hold promise for sustainable and resilient farming systems. In summary, this review consolidates the current body of knowledge surrounding silymarin’s potential in agriculture. It underscores the versatility of silymarin as a natural tool for crop protection, growth enhancement, and environmental sustainability, offering valuable insights for researchers, practitioners, and policymakers seeking innovative approaches to address the challenges of modern agriculture.
The major objective of this research paper is to assess the management effectiveness of Sheikh Badin National Park District Dera Ismail Khan Khyber Pakhtunkhwa, Pakistan with respect to tourist’s satisfaction. A sample size of 389 respondents (local community, wildlife staff, tourists) were selected through simple random sampling to conclude respondents’ attitude towards phenomenon investigated through three-level Likert scale as a measurement tool. Association between a dependent variable (management effectiveness) was assessed on the independent variables (tourist satisfaction) through a chi-square test. Association of management effectiveness was highly significant with tourists satisfaction from promos of park (p = 0.000), access to information (p = 0.000), roads network (p = 0.000), residential facilities (p = 0.000), trained guides (p = 0.000), safety from crimes and criminals (p = 0.000), provision of health and security services (p = 0.000), overall satisfaction of tourists (p = 0.000), recommendation of SBNP to other tourists (p = 0.000) and revisit intentions of tourists (p = 0.000). Improvement in security measures, better advertisement and improvement in park infrastructure were major recommendations considering the study.
A salinity gradient solar pond (SGSP) is a large and deep artificial basin of layered brine, that collects and stores simultaneous solar energy for use in various applications. Experimental and theoretical studies have been launched to understand the thermal behavior of SGSPs, under different operating conditions. This article then traces the history of SGSPs, from their natural discovery to their current artificial applications and the progress of studies and research, according to their chronological sequence, in terms of determining their physical and dynamic aspects, their operation, management, and maintenance. It has extensively covered the theoretical and experimental studies, as well as the direct and laboratory applications of this technology, especially the most famous and influential in this field, classified according to the aspect covered by the study, with a comparison between the different results obtained. In addition, it highlighted the latest methods to improve the performance of an SGSP and facilitate its operation, such as the use of a magnetic field and the adoption of remote data acquisition, with the aim of expanding research and enhancing the benefit of this technology.
Monitoring marine biodiversity is a challenge in some vulnerable and difficult-to-access habitats, such as underwater caves. Underwater caves are a great focus of biodiversity, concentrating a large number of species in their environment. However, most of the sessile species that live on the rocky walls are very vulnerable, and they are often threatened by different pressures. The use of these spaces as a destination for recreational divers can cause different impacts on the benthic habitat. In this work, we propose a methodology based on video recordings of cave walls and image analysis with deep learning algorithms to estimate the spatial density of structuring species in a study area. We propose a combination of automatic frame overlap detection, estimation of the actual extent of surface cover, and semantic segmentation of the main 10 species of corals and sponges to obtain species density maps. These maps can be the data source for monitoring biodiversity over time. In this paper, we analyzed the performance of three different semantic segmentation algorithms and backbones for this task and found that the Mask R-CNN model with the Xception101 backbone achieves the best accuracy, with an average segmentation accuracy of 82%.
Copyright © by EnPress Publisher. All rights reserved.