One-dimensional unsteady theoretical models of three different photovoltaic module installation modes are established. Through MATLAB modeling and simulation, the influence of photovoltaic modules on roof heat transfer in different layout modes is compared. Comparing with ordinary roof, the shading effect of photovoltaic roof in summer and heat preservation effect in winter was analyzed. The results show that the PV roof layout with ventilation channel is better in summer. The proof layout with closed flow channel is better in winter.
The present article reports the applications of Caputo-Fabrizio time-fractional derivatives. This article generalizes the idea of unsteady MHD free convective flow in a Walters.-B fluid with heat and mass transfer study over an exponential isothermal vertical plate embedded in a porous medium. The governing equations are converted into dimensionless form and extended to fractional model. The generalized Walters-B fluid model has been solved analytically using the Laplace transform technique. From the general solutions we reduce limiting solutions when to the similar motion for Newtonian fluid. The corresponding expressions for and Nusselt and Sherwood numbers are also assessed. Numerical results for velocity, temperature and concentration are demonstrated graphically for various factors of interest and discussed. As a result, we have plotted the influence of fractional parameter on fluid flow and drawn comparison between fractional Walters’-B and fractional Newtonian fluid and found that fractional Newtonian fluid is faster than fractional Walters’-B fluids.
In recent years, the foundry sector has been showing an increased interest in reclamation of used sands. Grain shape, sieve analysis, chemical and thermal characteristics must be uniform while molding the sand for better casting characteristics. The problem that tackled by every foundry industry is that of processing an adequate supply of sand which has the properties to meet many requirements imposed upon while molding and core making. Recently, fluidized bed combustors are becoming core of ‘clean wastes technology’ due to their efficient and clean burning of sand. For proven energy efficient sand reclamation processing, analysis of heating system in fluidized bed combustor (FBC) is required. The objective of current study is to design heating element and analysis of heating system by calculation of heat losses and thermal analysis offluidized bed combustorfor improving efficiency.
The regulation of compressor extraction and energy storage can improve the performance of gas turbine energy system. In order to make the gas turbine system match the external load more flexibly and efficiently, a gas turbine cogeneration system with solar energy coupling compressor outlet extraction and energy storage is proposed. By establishing the variable condition mathematical model of air turbine, waste heat boiler and solar collector, we use Thermoflex software to establish the variable condition model of gas turbine compressor outlet extraction, and analyze the variable condition of the coupling system to study the changes of thermal parameters of the system in the energy storage, energy release and operation cycle. Taking the hourly load of a hotel in South China as an example, this paper analyzes the case of the cogeneration system of solar energy coupling compressor outlet extraction and energy storage, and compares it with the benchmark cogeneration system. The results show that taking a typical day as a cycle, the primary energy utilization rate of the system designed in this paper is 3.2% higher than that of the traditional cogeneration system, and the efficiency is 2.4% higher.
Coal is important basic energy and important raw materials, the development of coal industry to support the rapid development of the national economy. In the 1950s and 1960s, the proportion of coal in China's primary energy production and consumption structure accounted for 90% and 80% respectively, and the proportion of coal in 2004 was 75.6% and 67.7% respectively. In recent years, with the rapid development of fully mechanized mining equipment manufacturing technology, fully mechanized mining equipment to heavy, strong and automated, so that the reliability of the equipment is guaranteed, a strong impetus to the development of large mining technology, new round of coal mining technology revolution, the current in the East, Jincheng and other mining areas have been the first in the thick coal seam f = 1.5-5 use of large mining height fully mechanized mining equipment, to achieve the highest efficiency, the lowest cost of tons of coal. The main points of this paper are: in the production of coal enterprises to improve the competitiveness of the coal market. Conditions and conditions of coal storage conditions should be allowed to give priority to the use of large mining and mining methods.
Copyright © by EnPress Publisher. All rights reserved.