The tourism sector is exponentially expanding across the globe. Despite different forms of tourism, community-based tourism has evolved with new dimensions of development. Assessing the sustainable development of the sector is a top priority in order to adopt the new forms. Therefore, in this study, the association between community-based tourism and its sustainable development was measured under the lens of collaborative theory and social exchange perspective. Non-probabilistic judgmental sampling techniques were applied, and 201 respondents were assessed. Data analysis was conducted using structural equation modeling (SEM). The study grounded with residents’ perspectives and attested that community-based tourism directly enhanced residents’ economic conditions with a better environment, and the relationship between residents and tourists enhanced the tourism industry’s sustainable development. Stakeholders like government and local administrations play a significant role in exploring community-based tourism. This outcome of the research will be a substantial resource for local administrations, governments, researchers, policymakers and practitioners.
This study examines how Artificial Intelligence (AI) enhances Sharia compliance within Islamic Financial Institutions (IFIs) by improving operational efficiency, ensuring transparency, and addressing ethical and technical challenges. A quantitative survey across five Saudi regions resulted in 450 validated responses, analyzed using descriptive statistics, ANOVA, and regression models. The findings reveal that while AI significantly enhances transparency and compliance processes, its impact on operational efficiency is limited. Key barriers include high implementation costs, insufficient structured Sharia datasets, and integration complexities. Regional and professional differences further underscore the need for tailored adoption strategies. It introduces a novel framework integrating ethical governance, Sharia compliance, and operational scalability, addressing critical gaps in the literature. It offers actionable recommendations for AI adoption in Islamic finance and contributes to the global discourse on ethical AI practices. However, the Saudi-specific focus highlights regional dynamics that may limit broader applicability. Future research could extend these findings through cross-regional comparisons to validate and refine the proposed framework. By fostering transparency and ethical governance, AI integration aligns Islamic finance with socio-economic goals, enhancing stakeholder trust and financial inclusivity. The study emphasizes the need for targeted AI training, the development of structured Sharia datasets, and scalable solutions to overcome adoption challenges.
While extensive research has explored interconnectedness, volatility spillovers, and risk transmission across financial systems, the comparative dynamics between Islamic and conventional banks during crises, particularly in specific regions such as Saudi Arabia, are underexplored. This study investigates risk transmissions and contagion among banks operating in Islamic and conventional modes in the Kingdom of Saudi Arabia. Daily banking stock data spanning November 2018 to November 2023, encompassing two major crises—COVID-19 and the Russian-Ukraine war—were analyzed. Using the frequency TVP-VAR approach, the study reveals that average total connectedness for both banking groups exceeds 50%, with short-run risk transmission dominating over long-term effects. Graphical visualizations highlight time-varying connectedness, driven predominantly by short-run spillovers, with similar patterns observed in both Islamic and conventional banking networks. The main contribution of this paper is the insight that long-term investment strategies are crucial for mitigating potential risks in the Saudi banking system, given its limited diversification opportunities.
The initiation of tapering, sparked by heightened inflation in the United States, reverberates across global markets, with notable implications for Indonesia. This study delved into the nuanced impact of tapering on Sharia-compliant stocks in both Indonesia and Malaysia. The rationale behind selecting Sharia stocks for analysis lies in their composition, featuring companies boasting low debt-to-asset and equity ratios, thereby positing robust resilience in the face of the Federal Reserve’s implementation of tapering. Employing a time series dataset with a weekly sampling period spanning from January to September 2022, the analysis adopted the Error Correction Model (ECM) within a multiple regression framework to circumvent potential spurious regression pitfalls. The results of this study indicate that the impact of tapering off policy in Indonesia has a positive impact in the short term and long term, while in Malaysia it tends to be insignificant in the short term and has a positive impact from the US 10-year bond yield variable and a negative impact from US 1-Year Treasury Bills. This result is interesting because it differs from the general theory. The causal factors include the agility of the Indonesian central bank in maintaining the benchmark interest rate spread with the Fed, the economic stability of both countries, and the increasing trend of coal, with Indonesia being one of the largest producers of the commodity. Investors, in navigating these intricate dynamics, may find strategic insights derived from this research invaluable for shaping their investment decisions. while government policymakers may use them as a reference for shaping policies related to Sharia stock investments, including the incorporation of artificial intelligence.
This research examines the interplay between human dignity and the pursuit of knowledge within Islamic thought, using insights from the Quran. It explores how Islamic epistemology emphasizes the harmonious integration of divine revelation and human reason, underscoring the importance of knowledge as a key factor in both intellectual and spiritual development. By analyzing the contributions of classical Islamic scholars, such as Al-Farabi, Ibn Sina, and Al-Ghazali, alongside Western epistemological traditions, the study highlights complementary and contrasting approaches to understanding knowledge and its role in shaping ethics and governance. Furthermore, the research draws on contemporary case studies, such as the Marrakesh Declaration and Masdar City, to illustrate how Quranic principles of cooperation, justice, and environmental stewardship can inform modern societal frameworks. Ultimately, the study argues for the continued relevance of Islamic thought in addressing contemporary global challenges, emphasizing that the pursuit of knowledge not only advances scientific discovery but also promotes human dignity, justice, and societal well-being.
This research aims to develop a Synergy Learning Model in the context of science learning. This research was conducted at Islamic Junior High School, Madrasah Tsanawiyah Negeri 2 Medan, involving 64 students of Grade 7 as the research subject. The method used in this research refers to the development research approach (R&D). In collecting the data, the research employed test and non-test techniques. The results prove that the Synergy learning model developed is effective in improving student learning outcomes. This is evident through the t-test statistical test where the t-count of 4.26 is higher than the t-table of 1.99. In addition, the level of practicality with a score of 3.39 is categorized as practical. This learning model emphasizes the learning process that supports the development of science skills and develops students' competencies in planning, collaborating, and critically reflecting. The findings of this study contribute to pedagogical practices and literature in the field of science learning.
Copyright © by EnPress Publisher. All rights reserved.