Objective: This study aimed to examine the psychometric properties of the 21-item Depression, Anxiety, and Stress Scale (DASS-21) in a sample of Moroccan students. Method: A total of 208 Moroccan students participated in this study. The dimensionality of the DASS-21 scale was assessed using exploratory factor analysis. Construct validity was assessed using the Stress Perception (PSS-10), State Anxiety (SAI), and Depression (CESD-10) scales. Results: Correlation analyses between Depression, Anxiety, and Stress subscales showed significant results. The exploratory factor analysis results confirmed the DASS’s three-dimensional structure. Furthermore, correlation analyses revealed positive correlations between the DASS-18 sub-dimensions and the three scales for Stress (PSS-10), Anxiety (SAI), and Depression (CESD-10). Conclusion: In line with previous work, the results of this study suggest that the DASS-18 reflect adequate psychometric properties, making it an appropriate tool for use in the university context.
Based on the research on 31 provincial-level administrative regions at the end of 2022, we used the geographic concentration index, geographic imbalance index, SPSS and ARCGIS spatial analysis techniques to study the spatial distribution, distribution factor correlation, and accessibility of national 5A-level scenic spots. The research results show that the overall distribution of my country's 5A-level scenic spots is unbalanced, with a low degree of concentration, showing a pattern of denseness in the east and sparseness in the west, with large inter-provincial differences. The density of traffic highways is positively correlated with the distribution density of 5A-level scenic spots. The traffic lines in the central and eastern regions are dense, and there are a large number of 5A-level scenic spots, especially the Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and the middle and lower reaches of the Yangtze River and Yellow River. Therefore, the spatial distribution of China's 5A-level tourist attractions is mainly affected by the interaction of economic, transportation and social factors, among which GDP, transportation network and attraction of scenic spots are the most critical factors. These research results can provide a reference for optimizing the spatial layout of China's scenic resources and promoting regional socio-economic development.
The successful execution of large-scale infrastructure projects is essential for economic growth and societal development, but these projects are too often beset with financial risks. The main financial risks related to infrastructure projects, including cost overrun, funding uncertainty, currency fluctuation, and regulatory change are examined in this research. The study identifies and assesses the magnitude and frequency of these risks by combining surveys and analysis of financial reports. The findings show that current risk management strategies, including hedging, contingency funds, and public-private partnerships, are often unsuitable to respond to the specific needs of financial uncertainties. The research suggests the need for an all-encompassing financial risk management framework that relies on real-time data analysis and a cocktail of risk assessment tools. Additionally, the development of strategic tailored approaches to address financial risk recovery depends on proactive stakeholder engagement. This research complements the existing literature on risk management in infrastructure projects by highlighting the financial dimensions of risk management and suggesting future research on advanced financial tools and technologies. Ultimately, large-scale infrastructure project sustainability and success contribute to economic stability and societal well-being can only be achieved through effective financial risk management.
The economy, unemployment, and job creation of South Africa heavily depend on the growth of the agricultural sector. With a growing population of 60 million, there are approximately 4 million small-scale farmers (SSF) number, and about 36,000 commercial farmers which serve South Africa. The agricultural sector in South Africa faces challenges such as climate change, lack of access to infrastructure and training, high labour costs, limited access to modern technology, and resource constraints. Precision agriculture (PA) using AI can address many of these issues for small-scale farmers by improving access to technology, reducing production costs, enhancing skills and training, improving data management, and providing better irrigation infrastructure and transport access. However, there is a dearth of research on the application of precision agriculture using artificial intelligence (AI) by small scale farmers (SSF) in South Africa and Africa at large. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Bibliometric analysis guidelines were used to investigate the adoption of precision agriculture and its socio-economic implications for small-scale farmers in South Africa or the systematic literature review (SLR) compared various challenges and the use of PA and AI for small-scale farmers. The incorporation of AI-driven PA offers a significant increase in productivity and efficiency. Through a detailed systematic review of existing literature from inception to date, this study examines 182 articles synthesized from two major databases (Scopus and Web of Science). The systematic review was conducted using the machine learning tool R Studio. The study analyzed the literature review articled identified, challenges, and potential societal impact of AI-driven precision agriculture.
Freshwater problems in coastal areas include the process of salt intrusion which occurs due to decreasing groundwater levels below sea level which can cause an increase in salt levels in groundwater so that the water cannot be used for water purposes, human consumption and agricultural needs. The main objective of this research is to implementation of RWH to fulfill clean water needs in tropical coastal area in Tanah Merah Village, Indragiri Hilir Regency, with the aim of providing clean water to coastal communities. The approach method used based on fuzzy logic (FL). The model input data includes the effective area of the house’s roof, annual rainfall, roof runoff coefficient, and water consumption based on the number of families. The BWS III Sumatera provided the rainfall data for this research, which was collected from the Keritang rainfall monitoring station during 2015 and 2021. The research findings show that FL based on household scale RWH technology is used to supply clean water in tropical coastal areas that the largest rainwater contribution for the 144 m2 house type for the number of residents in a house of four people with a tank capacity of 29 m2 is 99.45%.
The recent crisis-filled period has placed a significant burden on various businesses, including in the tourism sector. As a result, the concept of resilience, the flexible ability to resist, has become more and more tangible. This study aims to update the quantitative organizational resilience assessment scale of Orchiston, Prayag and Brown. The paper analyses a sample of 87 tourism service providers managing attractions, and factor analysis was carried out to identify the factors in order to be able to measure the resilience of tourism service providers. Four factors could be identified: Leadership and Organization, Strategy, Independence, and Internal Identity. These identified factors and the included 14 items mean the key contribution, as a new, updated assessment system.
Copyright © by EnPress Publisher. All rights reserved.