The proposed research work encompasses implications for infrastructure particularly the cybersecurity as an essential in soft infrastructure, and policy making particularly on secure access management of infrastructure governance. In this study, we introduce a novel parameter focusing on the timestamp duration of password entry, enhancing the algorithm titled EPSBalgorithmv01 with seven parameters. The proposed parameter incorporates an analysis of the historical time spent by users entering their passwords, employing ARIMA for processing. To assess the efficacy of the updated algorithm, we developed a simulator and employed a multi-experimental approach. The evaluation utilized a test dataset comprising 617 authentic records from 111 individuals within a selected company spanning from 2017 to 2022. Our findings reveal significant advancements in EPSBalgorithmv01 compared to its predecessor namely EPSBalgorithmv00. While EPSBalgorithmv00 struggled with a recognition rate of 28.00% and a precision of 71.171, EPSBalgorithmv01 exhibited a recognition rate of 17% with a precision of 82.882%. Despite a decrease in recognition rate, EPSBalgorithmv01 demonstrates a notable improvement of approximately 14% over EPSBalgorithmv00.
The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
Developing “New Quality Productive Forces” (NQPFs) has been accepted as a new theory to accelerate the high-quality development in China. In current, China’s high-quality development mainly relies on the traction of the digital economy. In view of this, developing NQPFs in China’s digital economy sector requires locate and remove some obstacles, such as the insufficient utilization of data, inadequate algorithm regulation, the mismatched supply and demand of regional computing power and the immature market environment. As a solution, it is necessary to allocating data property rights in a market-oriented way, establishing a user-centered algorithm governance system, accelerating the establishment of the national integrated computing network, and maintaining fair competition to optimize the market environment.
Introduction: Chatbots are increasingly utilized in education, offering real-time, personalized communication. While research has explored technical aspects of chatbots, user experience remains under-investigated. This study examines a model for evaluating user experience and satisfaction with chatbots in higher education. Methodology: A four-factor model (information quality, system quality, chatbot experience, user satisfaction) was proposed based on prior research. An alternative two-factor model emerged through exploratory factor analysis, focusing on “Chatbot Response Quality” and “User Experience and Satisfaction with the Chatbot.” Surveys were distributed to students and faculty at a university in Ecuador to collect data. Confirmatory factor analysis validated both models. Results: The two-factor model explained a significantly greater proportion of the data’s variance (55.2%) compared to the four-factor model (46.4%). Conclusion: This study suggests that a simpler model focusing on chatbot response quality and user experience is more effective for evaluating chatbots in education. Future research can explore methods to optimize these factors and improve the learning experience for students.
Copyright © by EnPress Publisher. All rights reserved.