Potassium is an essential macronutrient for living creatures on earth and in plants, it plays a very significant role in determining the overall health of the plants. Although potassium is present in the soil, it is present in a form that is inaccessible to the plants, and hence synthetic harmful non-eco-friendly potassium fertilizers are used. To overcome this problem, the use of eco-friendly potassium-solubilizing bacteria comes into play. The goal of the present study was to assess the potassium-solubilizing bacteria that inhabit the farm rhizosphere, which demonstrate the presence of enzymes associated with plant growth promotion and antagonistic properties. A total of thirty-four isolates were isolated from the rhizosphere. All these isolates were subjected to a potassium solubilization test on Aleksandrov agar medium, out of which fourteen were found to possess potassium solubilizing ability. On the basis of the 16S rRNA gene sequencing, the most potential potassium-solubilizing bacterium was identified as Proteus mirabilis PSCR17. The plant growth promoting abilities and production of biocontrol enzymes of this isolate were evaluated, and the results indicated, in addition to potassium solubilization, the isolate was positive for indole acetic acid production, hydrogen cyanide production, amylase, catalase, cellulase, chitinase, and protease. The use of potassium fertilizers is harmful to the environment and ecosystem; hence, this study concludes that P. mirabilis PSCR17 can be used as a substitute for chemical potassium fertilizers to improve the growth and biocontrol traits of the plants in a sustainable manner after further research.
The food industry progressively requires innovative and environmentally safe packaging materials with increased physical, mechanical, and barrier properties. Due to its unique properties, cellulose has several potential applications in the food industry as a packaging material, stabilizing agent, and functional food ingredient. A coffee pod is a filter of cellulosic, non-rigid, ready-made material containing ground portions and pressed coffee prepared in dedicated machines. In our study, we obtained, with homogenization and sonication, cellulose micro/nanoparticles from three different coffee pods. It is known that nanoparticulate systems can enter live cells and, if ingested, could exert alterations in gastrointestinal tract cells. Our work aims to investigate the response of HT-29 cells to cellulose nanoparticles from coffee pods. In particular, the subcellular effects between coffee-embedded nanocellulose (CENC) and cellulose nanoparticles (NC) were compared. Finally, we analysed the pathologic condition (Cytolethal Distending Toxin (CDT) from Campylobacter jejuni) on the same cells conditioned by NC and CENC. We evidenced that, for the cellular functional features analysed, NC and CENC pre-treatments do not worsen cell response to the C. jejuni CDT, also pointing out an improvement of the autophagic flux, particularly for CENC preconditioning.
This work is a part of research on the microstructure and mechanical properties of Cr-Ni-Si steels after various thermal treatments [1, 2]. The need to minimize damage and losses caused by emerging failures in complex engineering facilities such as nuclear, thermal and hydroelectric power stations, and gas and oil pipelines necessitates the creation of materials of high strength, plasticity, welding and high rigidity.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
Lead sulfide (PbS) is an important IV-VI semiconductor material with narrow bandwidth and wide wave width, which attracts people's attention. Nano-level PbS has many novel optoelectronic properties and has a wide range of applications in the field of optoelectronics, such as infrared optoelectronic devices, photovoltaic devices, light-emitting devices and display devices. In this paper, Pbs is produced by solvent thermal method by using lead acetate as lead source, sulfur power as sulfur source, ethylene glycol as solvent, and acetic acid to provide acidic environment. The reaction acidity, type of lead source, amount of sulfur source and other aspects will be explored. The products obtained under different conditions were characterized by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM). The results showed that PbS produced at 140°C for 24 hours, using 14mL ethylene glycol and 1.2mL acetic acid has the best morphology. It has a non-planar six-arm symmetrical structure. Finally, we prepare the lead sulfide composite Ni/PbS, and characterized it.
Modified chitosan hybrids were obtained via chemical reaction of chitosan with two pyrazole aldehyde derivatives to produce two chitosan Schiff bases, Cs-SB1, and Cs-SB2, respectively. FTIR spectroscopy and scanning electron microscopy confirmed both chemical structures and morphology of these Schiff bases. Thermal gravimetric analysis showed an improvement of thermal properties of these Schiff bases. Both chitosan Schiff bases were evaluated in a batch adsorption approach for their ability to remove Cu(II) ions from aqueous solutions. Energy dispersive X-ray for the Schiff bases adsorbed metal ions in various aqueous solutions was performed to confirm the existence of adsorbed metal ions on the surface substrate and their adsorptive efficiency for Cu(II) ions. Results of the batch adsorption method showed that prepared Schiff bases have good ability to remove Cu(II) ions from aqueous solutions. The Langmuir isotherm equation showed a better fit for both adsorbents with regression coefficients (R2 = 0.97 and 0.99, respectively) with maximum adsorption capacity for Cu(II) of 10.33 and 39.84 mg/g for Cs-SB1 and Cs-SB2, respectively. All prepared compounds, pyrazoles and two chitosan Schiff bases, showed good antimicrobial activity against three Gram +ve bacteria, three Gram –ve bacteria and Candida albicans, with varying degrees when compared to the standard antimicrobial agents.
Copyright © by EnPress Publisher. All rights reserved.