The xanthorrhiza species of the genus Arracacia belongs to the Apiaceae family and is known for its ability to generate tuberous reservoir roots that are harvested annually and marketed fresh in South American countries such as Colombia, Brazil, Venezuela, Peru, Bolivia and Ecuador. In Colombia, arracacha is planted mainly in 15 departments and the regional cultivars are differentiated by the color of the leaves, petiole and tuberous root, the best known being amarilla común or paliverde, yema de huevo, and cartagenera. There are studies that have characterized regional materials by applying a limited number of descriptors, but they do not allow knowing the morphology and phenotypic differentiation of each one; therefore, their definition and characterization constitute a support in breeding programs that allow the efficient use of the genetic potential and increase the knowledge about the diversity of cultivars. Phenotypic characterization and description of three cultivars was performed during two production cycles (2016 and 2018) in two phases (vegetative and productive) applying 74 morphological variables (42 qualitative and 32 quantitative) organized in seven groups of variables: plant, leaf, leaflet, petiole, propagule, stock and tuberous root. A factorial analysis for mixed data (FAMD) was performed, which incorporated a multivariate analysis with all variables and identified 11 discriminant variables, 8 qualitative and 3 quantitative, which can be used in processes of characterization of arracacha materials. A morphological description of each cultivar was made, which means that this is the first complete characterization study of regional arracacha materials in Colombia.
Marine geological maps of the Campania region have been constructed both to a 1:25.000 and to a 1:10.000 scale in the frame of the research projects financed by the Italian National Geological Survey, focusing, in particular, on the Gulf of Naples (Southern Tyrrhenian Sea), a complex volcanic area where volcanic and sedimentary processes strongly interacted during the Late Quaternary and on the Cilento Promontory offshore. In this paper, the examples of the geological sheets n. 464 “Isola di Ischia” and n. 502 “Agropoli” have been studied. The integration of the geological maps with the seismo-stratigraphic setting of the study areas has also been performed based on the realization of interpreted seismic profiles, providing interesting data on the geological setting of the subsurface. The coastal geological sedimentation in the Ischia and Agropoli offshore has been studied in detail. The mapped geological units are represented by: i) the rocky units of the acoustic basement (volcanic and/or sedimentary); ii) the deposits of the littoral environment, including the deposits of submerged beach and the deposits of toe of coastal cliff; iii) the deposits of the inner shelf environment, including the inner shelf deposits and the bioclastic deposits; iv) the deposits of the outer shelf environment, including the clastic deposits and the bioclastic deposits; v) the lowstand system tract; vi) the Pleistocene relict marine units; vii) different volcanic units in Pleistocene age. The seismo-stratigraphic data, coupled with the sedimentological and environmental data provided by the geological maps, provided us with new insights on the geologic evolution of this area during the Late Quaternary.
The purpose of this article is to determine the equitability of airport and university allocations throughout Ethiopian regional states based on the number of airports and institutions per 1 million people. According to the sample, the majority of respondents believed that university allocation in Ethiopia is equitable. In contrast, the majority of respondents who were asked about airports stated that there is an uneven distribution of airports across Ethiopia’s regional states. Hence, both interviewees and focus group discussants stated that there is a lack of equitable distribution of universities and airports across Ethiopia’s regional states. This paper contributes a lesson on how to create a comprehensive set of determining factors for equitable infrastructure allocation. It also provides a methodological improvement for assessing infrastructure equity and other broader implications across Ethiopian regional states.
Soil salinization is a difficult challenge for agricultural productivity and environmental sustainability, particularly in arid and semi-arid coastal regions. This study investigates the spatial variability of soil electrical conductivity (EC) and its relationship with key cations and anions (Na+, K+, Ca2+, Mg2+, Cl⁻, CO32⁻, HCO3⁻, SO42⁻) along the southeastern coast of the Caspian Sea in Iran. Using a combination of field-based soil sampling, laboratory analyses, and Landsat 8 spectral data, linear Multiple Linear Regression and Partial Least Squares Regression (MLR, PLSR) and nonlinear Artifician Neural Network and Support Vector Machine (ANN, SVM) modeling approaches were employed to estimate and map soil EC. Results identified Na+ and Cl⁻ as the primary contributors to salinity (r = 0.78 and r = 0.88, respectively), with NaCl salts dominating the region’s soil salinity dynamics. Secondary contributions from Potassium Chloride KCl and Magnesium Chloride MgCl2 were also observed. Coastal landforms such as lagoon relicts and coastal plains exhibited the highest salinity levels, attributed to geomorphic processes and anthropogenic activities. Among the predictive models, the SVM algorithm outperformed others, achieving higher R2 values and lower RMSE (RMSETest = 27.35 and RMSETrain = 24.62, respectively), underscoring its effectiveness in capturing complex soil-environment interactions. This study highlights the utility of digital soil mapping (DSM) for assessing soil salinity and provides actionable insights for sustainable land management, particularly in mitigating salinity and enhancing agricultural practices in vulnerable coastal systems.
Water scarcity, particularly in arid and semi-arid regions, is a critical issue affecting forest management. This study investigates the effects of drought stress on the water requirement and morphological characteristics of two important tree species Turkish pine and Chinaberry. Using a factorial design, the study examines the impact of three age stages (one-year-old, three-year-old, and five-year-old plants) and three levels of drought stress on these species. Microlysimeters of varying sizes were employed to simulate different drought conditions. Soil moisture was monitored to show the effect of the various irrigation schedules. The study also calculated reference crop evapotranspiration (ET0) using the PMF-56 method and developed plant coefficients (Kc) for the species. Results showed that evapotranspiration increased with soil moisture, peaking during summer and decreasing in winter. Turkish pine exhibited higher plant ET than Chinaberry, particularly among one-year-old seedlings. Drought stress significantly reduced evapotranspiration and water uses for both species, highlighting the importance of efficient water management in afforestation projects. The findings underscore the necessity of selecting drought-resistant species and optimizing irrigation practices to enhance the sustainability of green spaces in arid regions. These insights are crucial for improving urban forestry management and mitigating the impacts of water scarcity in Iran and similar climates globally.
Copyright © by EnPress Publisher. All rights reserved.